Minimizing resource protection in IP over WDM networks: Multi-layer Shared Backup Router

A. Mayoral, V. López, Ori Gerstel, Eleni Palkopoulou, O. Gonzalez de Dios, J.P. Fernández-Palacios
Index

01 Introduction

02 Multi-layer Restoration Techniques

03 Multi-Layer Shared Backup Router use case

04 Impact on CAPEX reduction

05 Conclusions
01

Introduction
Introduction

- Current networks operate with separated layers survivability mechanisms
 - 1+1, 1:1 or M:N Protection
 - Restoration

- Hierarchical Networks
02
Multi-layer Restoration Techniques
Multi-layer Restoration Techniques

• Failure in the optical layer:
 - GMPLS restoration of “alien” lambdas generated by IP colored ports.
 - Without alien wavelength, other scenarios are hidden to the IP.

• Failure in the IP layer:
 - Multi-layer Restoration after a port failure.
 - Multilayer Shared Back-up Router after a node failure.
IP port failure restoration

A. Without Multilayer Control: One back-up port per link (optical connection preconfigured)

B. Multilayer control: One back-up port per node (dynamic optical connection provisioning)
Multi-layer Shared Back-up Router
Multi-layer Shared Backup Routers
Multi-layer Shared Backup Routers

- Multi-layer restoration consist on using the increased DWDM layer connectivity and dynamicity to recover both layer failures.
- Multi-layer restoration allows to increase availability due to the higher number of resources to drive traffic available.

Currently, MPLS survability only can be done using pre-stablished links. (Fixed neighbours).
Multi-layer Shared Backup Routers

Single Failure: Connectivity lost and then, ML-Path establishment

Traffic recovered in less than one minute established with the UNI interface.

With this approach CapEx can be decreased because of less backup routers needed.
Impact on CAPEX reduction
Table 1 shows the MTTR for protection and MLSBR schemes assuming a MTBF of 3 years.

OPEX can be reduced using this protection scheme as MTTR is greater for the same availability.

<table>
<thead>
<tr>
<th>Availability</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>Protection</th>
</tr>
</thead>
<tbody>
<tr>
<td>99,99%</td>
<td>33,0</td>
<td>59,2</td>
<td>86,6</td>
<td>110,7</td>
<td>132,6</td>
<td>11,1</td>
</tr>
<tr>
<td>99,999%</td>
<td>14,3</td>
<td>31,9</td>
<td>51,6</td>
<td>72,4</td>
<td>91,0</td>
<td>3,4</td>
</tr>
<tr>
<td>99,9999%</td>
<td>6,7</td>
<td>17,6</td>
<td>31,9</td>
<td>47,2</td>
<td>63,6</td>
<td>0,1</td>
</tr>
</tbody>
</table>

Table 1: Comparison between MLBSR and Protection in terms of MTTR (days)
CAPEX savings

- IP layer is dimension with a maximum occupation of 80% for 1+1 protection.
- The number of shared back-up router can vary.
- Two SBRs → 24% of savings in the number of IP ports.
- The percentage decreases conforms the number of SBR grows, but savings are conserved in 2017.
05

Conclusions
Conclusions and next Steps

- MLSBR can reduce up to 24% the number of IP ports in the network and it can increase the MTTR.
- Following table summarizes the advantages, disadvantages of both approaches and defines requirements to take into account to deploy the solution.

<table>
<thead>
<tr>
<th>Advantages</th>
<th>Drawbacks</th>
<th>Requirements</th>
</tr>
</thead>
<tbody>
<tr>
<td>Original planning</td>
<td>• Simple operation</td>
<td>• By-pass selection is required to reduce the cost of this approach.</td>
</tr>
<tr>
<td>• Traffic restoration in less than 50ms with FRR.</td>
<td>• Resource duplication.</td>
<td>• FRR to minimize restoration time.</td>
</tr>
<tr>
<td>MLSBR</td>
<td>• Minimize routers investment in chassis and ports.</td>
<td>• Optical mesh</td>
</tr>
<tr>
<td>• Extend MTTR and reduce OPEX</td>
<td>• MLSBR takes around 1 minute. It is limited by optical restoration time.</td>
<td>• GMPLS enabled in the optical mesh.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• UNI enabled.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Back-up routes pre-loaded in routers.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Configuration pre-loaded in transit back-up routers.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• FRR to minimize restoration time.</td>
</tr>
</tbody>
</table>
Multi-layer Shared Backup Routers

1+1 IP Protection with an additional router

- 10G Interface

Single Failure: Typical Operation: Traffic is moved to backup router.

With multi-layer restoration and extra router we can relax even more the MTTR requisites.

- After the first failure an UNI request is used
- Again we are in the initial situation with protection mechanisms ready.

Región 1

Región 2