Minimizing resource protection in IP over WDM networks: Multilayer Shared Backup Router

Telefonica

A. Mayoral, <u>V. López</u>, Ori Gerstel, Eleni Palkopoulou, O. Gonzalez de Dios, J.P. Fernández-Palacios

Multi-Layer Shared Backup Router use case

Impact on CAPEX reduction

Conclusions

01

Introduction

Introduction

- Current networks operate with separated layers survivability mechanisms
 - 1+1, 1:1 or M:N Protection
 - Restoration

02

Multi-layer Restoration Techniques

Multi-layer Restoration Techniques

Failure in the optical layer:

- GMPLS restoration of "alien" lambdas generated by IP colored ports.
- Without alien wavelength, other scenarios are hidden to the IP.
- Failure in the IP layer:
 - Multi-layer Restoration after a port failure.

Multilayer Shared Back-up Router after a node failure

Trials with vendors

ComMag Paper Jan 2014

This work

IP port failure restoration

- A. Without Multilayer Control: One back-up port per link (optical connection preconfigured)
- B. Multilayer control: One back-up port per node (dynamic optical connection provisioning)

- Multi-layer restoration consist on using the increased DWDM layer connectivity and dynamicity to recover both layer failures.
- Multi-layer restoration allows to increase availability due to the higher number of resources to drive traffic available.

Impact on CAPEX reduction

Case Study

- Table 1 shows the MTTR for protection and MLSBR schemes assuming a MTBF of 3 years.
- **OPEX** can be reduced using this protection scheme as MTTR is greater for the same availability.

	Number of Backup Routers					
Availability	2	3	4	5	6	Protection
99,99%	33,0	59,2	86,6	110,7	132,6	11,1
99,999%	14,3	31,9	51,6	72,4	91,0	3,4
99,9999%	6,7	17,6	31,9	47,2	63,6	0,1

Table 1: Comparison between MLBSR and Protection in terms of MTTR (days)

CAPEX savings

- IP layer is dimension with a maximum occupation of 80% for 1+1 protection.
- The number of shared back-up router can vary.
- Two SBRs → 24% of savings in the number of IP ports.
- The percentage decreases conforms the number of SBR grows, but savings are conserved in 2017.

Conclusions

Conclusions and next Steps

- MLSBR can reduce up to 24% the number of IP ports in the network and it can increase the MTTR.
- Following table summarizes the advantages, disadvantages of both approaches and defines requirements to take into account to deploy the solution.

	Advantages	Drawbacks	Requirements		
Original planning	 Simple operation Traffic restoration in less than 50ms with FRR. 	Resource duplication.Small MTTR	 By-pass selection is required to reduce the cost of this approach. FRR to minimize restoration time. 		
MLSBR	 Minimize routers investment in chassis and ports. Extend MTTR and reduce OPEX 	• MLSBR takes around 1 minute. It is limited by optical restoration time.	 Optical mesh GMPLS enabled in the optical mesh. UNI enabled. Back-up routes pre-loaded in routers. Configuration pre-loaded in transit back-up routers. FRR to minimize restoration time. 		

1+1 IP Protection with an additional router

10G Interface

RT

Single Failure: Typical Operation: Traffic is moved to backup router.

With multi-layer restoration and extra router we can relax even more the MTTR requisites.

