


# Implementación y evaluación de prestaciones del PCEP

JL. Añamuro, V. Lopez, J. Aracil JITEL 2011 X Jornada de Ingeniería Telemática

> Networking Journal Club 29th Julio 2011

#### Contenido

- 1. Introducción
- 2. Path Computation Element PCE
- 3. Arquitectura PCE
- 4. PCEP
- 5. Fases de PCEP
- 6. Evaluación de prestaciones
- 7. Intermitente Vs Permanente y Agrupamiento
- 8. Conclusiones



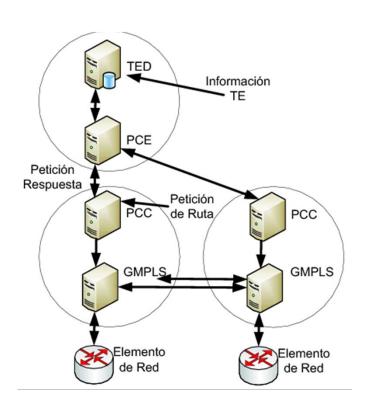
## Introducción

- Path Computation Element PCE
  - Elemento nuevo en las redes de nueva generación.
  - Calcular una ruta óptima aplicando restricciones.
  - Beneficio: Reduce los requisitos computacionales.
- Path Computation Element Protocol PCEP
  - Efectua la comunicación PCC- PCE.
- Objetivos.
  - Implementación del PCEP.
  - Evaluación de prestaciones del PCEP.



# Path Computation Element

#### Motivaciones


- Sobrecarga de procesamiento: Cálculo de la ruta -> alto coste computacional.
- Carencia del plano de control: El legado de las redes ópticas no cuentan con un plano de control.
- Redes multicapa

#### Plano de Control

- Proporcionar elementos de red con la capacidad de solicitar conexiones dinámicas.
- Realiza llamadas y control de conexiones, las establece, las las elimina y las restaura.



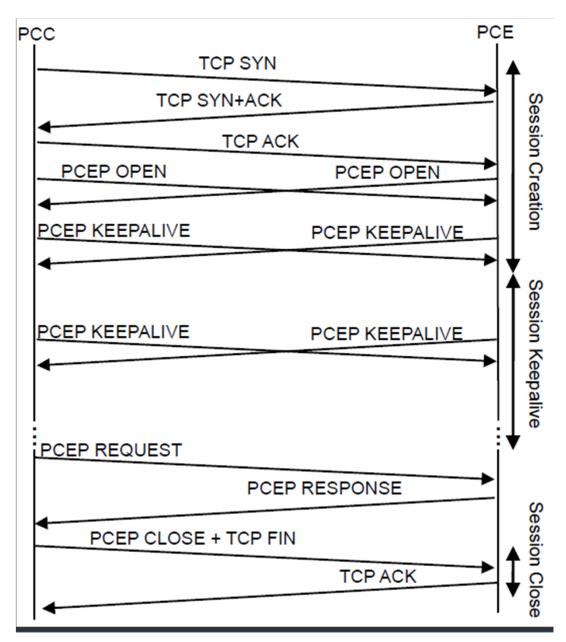
# Arquitectura PCE



#### Localización

- Esquema petición / respuesta.
- Un único PCE da servicio a muchos PCCs.




# Path Computation Element Protocol PCEP

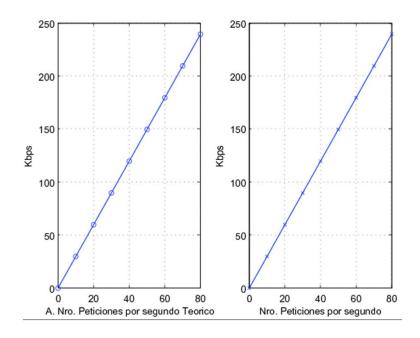
 Mensajes: Open, keepalive, Request, Reply, Notify, Error y Close.

#### **Fases**

- Fase de inicialización: Conexión tcp, sesión PCEP, keeptimer y Deadtimer.
- Sesión keepalive: ¿extremo disponible?
- Socilitud de cálculo de ruta
- Respuesta al cálculo de ruta








## Evaluación de prestaciones

- Determinar el ancho de banda en términos de la sobrecarga que introduce el PCEPen el plano de control.
- Modos de operación del PCEP
  - Modo Intermitente: 2 Open(78 bytes), 2 keepalive(70 bytes), 1 Request(94 bytes), 1 reply(90 bytes) y 1 Close(78 bytes). = 558 bytes.
  - Modo Permanente: 1 mensaje keepalive (70 bytes) cada keeptimer segundos, Request (94 bytes) y Reply (90 bytes).



## Intermitente vs Permanente

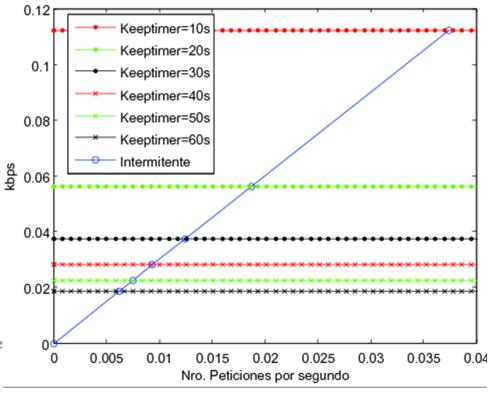


$$C_{inter} = 8 \times 558 \times N_{pet}$$

$$C_{perm} = \frac{8 \times 140}{Keeptimer} + 8 \times 184 \times N_{pet}$$



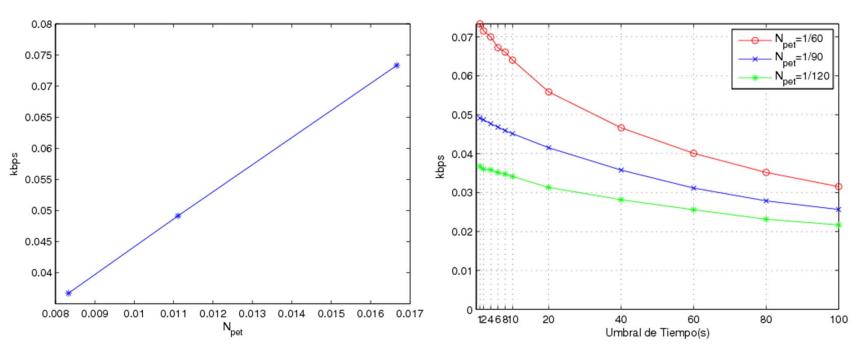
## Intermitente vs Permanente


| Keeptimer | Kbps   | Peticiones |
|-----------|--------|------------|
| 10        | 0,112  | 0,03743    |
| 20        | 0,056  | 0,01872    |
| 30        | 0,0373 | 0,01248    |
| 40        | 0,028  | 0,00936    |
| 50        | 0,0224 | 0,00749    |
| 60        | 0,0186 | 0,00624    |

$$C_{inter} = 8 \times 558 \times N_{pet}$$

$$N_{pet} = \frac{140}{Keeptimer \times 374}$$

$$C_{perm} = \frac{8 \times 140}{Keeptimer} + 8 \times 184 \times N_{pe}$$


¿Que modo de operación utiliza mayor ancho de banda en base al número de peticiones por segundo?





# Ancho de banda para Npet = {1/120, 1/90, 1/60}

# Ancho de banda usando agrupamiento





#### Conclusiones

- Se evaluó los modos de operación del PCEP para determinar el ancho de banda en términos de sobrecarga que el protocolo introduce en el plano de control.
- Reducción de la sobrecarga para una tasa de llegada de peticiones alta.

