

Performance evaluation of a Bayesian decisor in a multi-hop IP over WDM network scenario

Víctor López¹, José Alberto Hernández¹, Javier Aracil¹, <u>Óscar</u> <u>González de Dios²</u> and Juan P. Fernández Palacios²

> ¹Universidad Autónoma de Madrid ²Telefónica I+D

Optical Networking Design and Modeling - ONDM 2009 Wednesday, 18 February 2009

Outline

- Motivation
- Problem statement
 - Utility functions
 - Cost function
 - Risk function
- Numerical results and discussion
 - Decisor dynamics experiment
 - On the influence of the decisor's parameters
- Contributions

Motivation

- Current backbone networks are migrating to an IP over WDM scenario.
- In such scenario, a multilayercapable router has to decide whether to perform optical or electronic switching.

Design premises

(1) IP equipment is already deployed, so let's go to use it.

- When a proper service is not provided → establish an e2e lightpath.
- (2) The longer the light-path is, the more congestion is reduced at the IP layer.

Outline

Motivation

Problem statement

- Utility functions
- Cost function
- Risk function
- Numerical results and discussion
 - Decisor dynamics experiment
 - On the influence of the decisor's parameters
- Contributions

Problem Statement

There three key aspects in our model:

- Utility functions
- Cost function
- Risk function
- The multi-hop scenario used is:

Utility function definition

Definition:

• Utility associated to a delay of x units of time, experienced by the electronically switched LSPs.

Assumptions:

- The queuing delay is assumed to be Weibull distributed. [9-11]
- In this light the probability distribution function is [9]:

$$p(x) = \frac{s}{r^s} x^{s-1} \exp\{-\left(\frac{x}{r}\right)^s\}, x \ge 0$$

$$s = 2 - 2H$$

$$r = \frac{1}{C} \left(\frac{2K(H)^2 ame}{(C - me)^{2H}}\right)^{\frac{1}{2-2H}}$$

- Where:

» m: input traffic mean, C: link capacity, H: Hurst parameter, am=σ², e number of LSPs.

Utility function definition

- We define three utility functions:
 - Average delay based utility
 - The utility function is opposite to the end to end delay from the node j: $x_i^{e^{2e}}$.
 - Hard real-time utility
 - Hard real-time applications are those which tolerate a T_{\max} delay.
 - » ITU-T Y.1541 [12] and 3GPP S.R0035 [13] defined service classes based on thresholds. $U_{\text{step}}(x_i^{el})$
 - Elastic utility
 - Services, which are degraded little by little, till they reach T_{max.}
 - » Exponential function used to describe the degradation of elastic services.
 - » G.107 "E model" [14], for voice service degradation.

 $U_{mean}(x_j^{e2e}) = -x_j^{e2e}$

$$x_j^{e2e}) = \begin{cases} 1, & \text{if } x_j^{e2e} < T_{\max} \\ 0, & \text{otherwise} \end{cases}$$

$$U_{\exp}(x_j^{e2e}) = \lambda e^{-\lambda x_j^{e2e}}$$

eletonici

Cost function definition

- **Definition:** $C_T(\vec{e}) = C_e(\vec{e}) + R_{cost}C_o(\vec{e})$
 - $C_e(e)$ and $C_o(e)$ represent the cost associated to switching *e* LSPs in the electronic domain and N - ein the optical domain.
 - where R_{cost} is the relative utilization cost of the optical and electronic resources.
 - The cost of transmitting a LSP per hop is $\frac{(k+1)}{k}$
 - Where k is the path length. $\frac{k+1}{k} > \frac{l+1}{l}, \forall k < l$
 - If M is the maximum number of nodes, the cheapest hop is $\frac{M+1}{M}$ » Design premise (2)
 - To firstly route at the IP layer $\rightarrow R_{\text{cost}} > \frac{2 \cdot M}{M+1}$ » Design premise (1)

Cost function definition

The cost expression yields:

Group

$$C_{e}(\vec{e}) = \sum_{j=1}^{M} 2e_{j}$$

$$C_{o}(\vec{e}) = ((M+1)(N_{1} - e_{1}) + \sum_{j=2}^{M-1} (M - j + 2)(N_{j} - e_{j} + e_{j-1}))$$

 N_j → Number of incoming LSPs at node j e_j → LSPs switched via electronic layer. o_j → LSPs transmitted using e2e connections

Telefónica

Risk function definition

The Bayes risk is defined as:

$$R(\vec{e}, x_j^{e^{2e}}) = K_c C_T(\vec{e}) - K_u \sum_{j=1}^M \mathbb{E}_x \left[U(x_j^{e^{2e}}) \right],$$
$$x_j^{e^{2e}} \ge 0$$

- Where $C_T(\vec{e})$ is the cost function and $U(x_j^{e2e})$ is the utility function.
- K_c and K_u are normalization constants to define the decision when the system operates at maximum network load (N_{max}=C/m).

Outline

- Motivation
- Problem statement
 - Utility function
 - Cost function
 - Risk function

Numerical results and discussion

- Decisor dynamics experiment
- On the influence of the decisor's parameters
 - R_{cost} and T_{max}
- Contributions

Scenario definition

- M=3 (number of hops)
- 2.5 Gbps network link.
- Demands standard VC-3 LSPs (m = 34.358 Mbps).
 - $N_{max} = 72$
- Hurst parameter: *H* = 0.6 [15]
- $\sigma/m = 0.3.$
- R_{cost}=2
- T_{max} = 80ms (U_{exp}) and 5ms (U_{step})
- Normalization:
 - When N_{max} incoming LSPs, the hop-byhop electronic connection transmits 70% of the traffic, that is 50 LSPs.
 - This policy can be adjusted by the network operator as necessary.

Decisor dynamics experiment

Risk level curves

Traffic increment in the first node

Traffic increment in the second node

R_{cost} variation

R_{cost} variation 1.6, 2 and 3.

- The higher R_{cost} is the less number of LSPs are switched optically.
- U_{step} optimal working point does not depends on R_{cost} , but on the QoS

		$N_1 = 60, N_2 = 0$			$N_1 = 60, N_2 = 10$		
		U_{mean}	U_{step}	U_{exp}	Umean	U_{step}	U_{exp}
$R_{\rm cost} = 1.6$	e_1^*	33	50	32	17	41	16
	$e_2^{\tilde{*}}$	33	50	32	27	51	26
$R_{\rm cost} = 2$	e_1^*	50	50	50	37	42	37
	$e_2^{\tilde{*}}$	50	50	50	47	52	47
$R_{\rm cost} = 3$	e_1^*	58	51	58	54	49	54
	$e_2^{\tilde{*}}$	58	51	58	55	52	55

T_{max} variation

 Coarser QoS constraints → the more LSPs over the electronic layer.

T_{max} variation

- U_{step} has the same behavior than U_{exp}
- This parameter is related to the e2e QoS performance experienced by the LSPs

Outline

- Motivation
- Problem statement
 - Utility function
 - Cost function
 - Risk function
- Numerical results and discussion
 - Decisor dynamics experiment
 - On the influence of the decisor's parameters
 - R_{cost} and T_{max}

Contributions

Contributions

- Novel methodology to deal with the utilization of the electronic and optical layers in a multihop scenario with multi-layer capable routers.
- Thanks to the T_{max} and R_{cost} parameters, the decisors dynamically can change its behaviour.
- Future work:
 - To define a full risk-oriented routing mechanism.
 - The provisioning of multiple services in the same network scenario

Thank you!! Questions?

This work has been funded by BONE Network of Excellence and the Spanish project: "Multilayer Networks: IP over Transport Networks"