DESIGN AND IMPLEMENTATION OF SYNTHESIZABLE SPACEWIRE CORES

P. Aguilar-Jiménez, V. López, S. Sánchez, M. Prieto, D. Meziat

Space Research Group. Dpto. Automática. Universidad de Alcalá

E-mail: paguilarj@srg.aut.uah.es, mpm@srg.aut.uah.es, vlopezalvarez@gmail.com, chan@srg.aut.uah.es, meziat@aut.uah.es
Presentation goals

- Introduce Space Research Group (SRG)

- Design and implementation of synthesizable spacewire cores
Space Research Group

• University of Alcalá http://www.srg.uah.es

• Two divisions:
 – Scientific, Department of Physics
 – Technical, Department of Computer Engineering

• Capabilities:
 – Solar physics research
 – Mission planning and ground systems
 – Test development tools
 – On board software development
 – On board electronics development
Space Research Group Activities

On board satellite instrumentation (Electronics and SW)
- Hardware: processors, FPGAs, buses, etc.
- Hardware/Software Codesign
- Embedded systems
- Real time operating systems
- High reliability software development (Ada, C/C++, Java)
 - ESA standard PSS05
 - IEEE standards
- Object Oriented SW development tools (EDROOM, HRTHOOD)
- Planning & Scheduling
Space Research Group Projects

Finished:
- SOHO: CDPU CEPAC consortium
- PHOTON: PESCA instrument
- FUEGO 2: OBDH and flight software
- NanoSat 01: flight software and maintenance

In progress:
- NanoSat 1b: flight software
- Microsat: OBDH, RTUs, EGSE and flight SW
- Solar Orbiter: LVPS and CDPU for EPD experiment
- ExoMars: Autonomous Navigation Software Porting to RTEMS Leon 2 Platform
IP Library Development

- Synthesizable IP cores
 - RTU
 - CAN bus
 - TTC.B.01
 - MIL STD 1553
 - SpaceWire,
Spacewire IP Core

• Based in ECSS-E50-12A ESA Standard (from scratch)
• Synthesizable SpaceWire CODEC and router.
• Implemented on Xilinx and Actel devices
• Tested with StarDundee Ltd. commercial equipment (PCI2 board and USBbrick)
SpaceWire CODEC (I)
SpaceWire CODEC (II)

- Tx Strobe Signal Generation:
 - Based in Rx_clock Xoring properties.
 - From even and odd data sequencies.
 - Both sequencies are DDR combined to obtain Strobe output signal.
 - Path delay equalization using flip flops.

\[
S_{even} = D_{even} \oplus 1 = D_{even} \\
S_{odd} = D_{odd} \oplus 0 = D_{odd}
\]
SpaceWire CODEC (III)

- Rx even and odd sequencies processing:
 - Even seq. rising edge synchronised.
 - Odd seq. falling edge synchronised.
 - Processed separated, results are merged.
 - Taking advantage of half cycle lag at even seq.
 - Result: serial to parallel conversion
SpaceWire Router (II)

- Independent entity (structural approach).
- Basic approach: 4 nodes, WH routing, fixed LA.
- Up to 8 links (limit: FPGA resources)
- Generics based configuration (at synthesis)
Development and Testing

• Vital models from Actel and Xilinx. (postlayout testing)
• STAR-Dundee Ltd SpW PCI2 (Codec Prototype)
• STAR-Dundee Ltd SpW USB Brick (Network test)
Future Works

- Advanced codec host I/F: RMAP, DMA transfers …
- Improve router design: GAR, RMAP, addressing schemes, …
- PCB board design.
Acknowledgments

• Supported by the CICYT (grant ESP2005-07290-C02-02)
Thanks For Your Attention!

Any Question?