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Abstract—Current applications, such as on-line gaming or
media content delivery, require dynamic bandwidth allocation
and a tight integration between the network resources and
computing resources. Service orchestration faces the challenge
of combining and controlling the resources of these different
stratums and optimizing them.

This paper proposes the fully automated establishment of
a network service using a peer inter-CSO interface in ACTN.
The underlying network resources have been abstracted and
virtualized in order to provide a network slice. We present the
CSO/ACTN architecture and detail the main components. The
system is implemented and demonstrated in an experimental
testbed, where we characterize the setup delay of a virtual deep
packet inspection service across several network domains using
the proposed peer interface.

I. INTRODUCTION

Cloud computing is able to provide a variety of services
(such as on-line gaming, media content delivery, network
slicing). These services allow end-users to access large pools
of compute and storage resources, enabling various application
services (e.g., Video Caching, VM mobility, media content
delivery, IoT, etc.). Cloud computing services is one of the
faster emerging businesses for Internet Server Providers (ISP).

Data centers (DC) provide the physical and virtual in-
frastructure in which cloud computing applications are de-
ployed and chained into end-services. The proposed services
might be also aligned with Network Function Virtualization
(NFV) services. Since the DCs used to provide services may
be distributed geographically around a set of interconnected
networks, service deployment can affect on the state of the
network resources. Conversely the capabilities and current
state of the network can have a major impact on the service
performance; DCs have been spread geographically to reduce
latency to the end user, and that has led into an exponential
growth on the inter-datacenter traffic [1]. Consequently, DC
interconnection is one of the major problems that service
providers have to face, along the need to adapt the actual
rigid and fixed transport networks, enabling them with the
flexibility provided with the Software Defined Networking
(SDN) architecture.
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SDN is the solution to improve network programmability,
including the dynamic allocation of the network resources.
SDN proposes a centralized architecture where the control
entity (SDN controller) is responsible for providing an abstrac-
tion of network resources through programmable Application
Programming Interfaces (APIs). One of the main benefits of
this architecture resides on the ability to perform control and
management tasks of different network forwarding technolo-
gies such as packet/flow switches, circuit switching and optical
wavelength switched transport technologies. In the IETF new
data models are currently under definition, in order to allow the
integration of abstracted traffic enginery (TE) information in
the description of network resources [2] and in the allocation
of these resources [3].

Moreover, Abstraction and Control of Traffic Engineered
networks (ACTN) enables virtual network operations using
abstraction and virtualization mechanisms [4]. It allows cus-
tomers to request a virtual network over operators transport
networks, which are often multi-layer and multi-domain TE
networks. This virtual network is presented as an abstract
topology to customers, in such a way that they can use this
abstracted topology to offer applications over its virtual net-
work. Therefore, ACTN enables multi-tenant virtual network
services with flexibility and dynamicity. Along ACTN, and
in order to deal with the joint allocation of DC and network
resources, Cross Stratum Optimization (CSO) [5] involves a
cooperation between the Application Stratum and Network
Stratum to efficiently utilize cloud and network resources and
provide for overall application level quality of service.

In this paper we present a possible CSO architecture in-
volving multiple CSO service orchestrators, which interact in
a distributed (peer) model with the objective of provisioning
an End-to-End (E2E) service over multiple administrative
network and cloud domains. A virtual Deep Packet Inspection
(vDPI) service is provided as our use case, and we measure the
setup delay in deploying the service using the cloud computing
platform of the ADRENALINE testbed [6].



II. STATE OF THE ART

In this section we will present the current state of the art
of both the ACTN and CSO functional architectures, setting
the basis for highlighting their complementarity and how they
can interact and be used to fulfill our purpose of dynamic
service establishment over peer-CSO service orchestrators
using ACTN.

A. Abstraction and Control of Traffic Engineered Networks

ACTN provides an architecture for the virtualization of TE
networks. The architecture defines multiple functional entities
(controllers) according to their main functions and roles. In
this setting, the types of controller defined in the ACTN
architecture are shown in Fig. 1 and are as follows:
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1) Customer Network Controller (CNC): A Virtual Net-
work is requested by the Customer Network Controller via
the CNC-MDSC Interface (CMI). As the Customer Network
Controller directly interfaces to the applications, it is able to
understand multiple application requirements and their needs.
It is assumed that the CNC and the MDSC have a common
knowledge of the end-point interfaces based on their business
negotiations prior to service instantiation.

2) Multi Domain Service Coordinator (MDSC): The Multi
Domain Service Coordinator (MDSC) sits between the CNC
that issues VN requests and the Physical Network Controllers
(PNCs) that manage the physical network resources. The
MDSC is the responsible for the following functions: multi-
domain coordination, virtualization/abstraction, customer map-
ping/translation, and virtual service coordination. Multi-
domain coordination and virtualization/abstraction are referred
to as network control/coordination functions. While customer
mapping/translation and virtual service coordination are re-
ferred to as service control/coordination functions. The key
point of the MDSC is detaching the network and service
control from underlying technology to help the customer
express the network as desired by business needs. The MDSC
provides the deployment and control of the right technology to

meet business criteria. In essence it controls and manages the
primitives to achieve functionalities as desired by the CNC.
A hierarchy of MDSCs can be foreseen for scalability and
administrative choices.

3) Physical Network Controller (PNC): The Physical Net-
work Controller (PNC) refers to a standard SDN controller,
which allows configuration of the network elements, mon-
itoring the topology (physical or virtual) of the network,
and passing information about the topology (either raw or
abstracted) to the MDSC.

Moreover, a data model for the control of a data network
has also been proposed in [7]. This data model can be applied
as the NBI of a MDSC. It provides the basic elements for
Create/Read/Update/Delete (CRUD) operations over ACTN
VNs. It also describes two main ACTN elements:

e VN member: The VN can be understood as set of end-to-
end tunnels from a customer point of view, where each
tunnel is known as a VN member. Each VN member
might be formed by recursive abstraction of paths in
underlying networks.

o Access point (AP): An access point provides confidential-
ity between the customer and the provider. It is a logical
identifier shared between the customer and the provider,
used to map the end points of the border node in both
the customer and the provider network. A set of APs are
used by the customer when requesting VN service to the
provider.
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Cross Stratum Optimization (CSO) involves a cooperation
between the Application Stratum and Network Stratum in
order to optimize cloud and network resources and provide
for overall application level quality of service.

The Application stratum is the functional grouping which
considers application resources and the control and man-
agement of these resources. These application resources are
used along with network services to provide an application
service to customers. Application resources are non-network
resources critical to achieving the application service func-
tionality. Examples of application resources include: caches,
mirrors, application specific servers, content, large data sets,
and computing and storage power. Application service is a



networked application offered to a variety of clients. Several
application service examples are: server backup, VM migra-
tion, video cache, virtual network on-demand, 5G network
slicing. The entity responsible for application stratum control
and management of its resources is referred to as application
orchestrator.
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Fig. 3. Proposed ACTN-CSO architecture

The Network stratum is the functional grouping which
includes network resources and the control and management of
these resources providing transport of data between customers
and application sources. Network resources are resources such
as bandwidth, links, paths, path processing (creation, deletion,
and management), network databases, path computation, ad-
mission control, and resource reservation. There are different
types of network stratum controllers/orchestrators.

Figure 2 summarizes the CSO architecture, where the data
center orchestrator provides its data center network resource
abstraction pertaining to the applications to the CSO. Since
application services may use resources in multiple data centers
via data center interconnection, each data center orchestrator
involving in the application service should provide its resource
abstraction to the CSO so that the CSO would be able to
compute the optimal resource sequence and path meeting the
service objective.

The Wide Are Network (WAN) SDN controller(s) is(are)
also involved for an end-to-end service instantiation and its
life cycle operation that may traverse multiple data centers
dispersed in multiple domains. WAN SDN controllers may
also comprise multiple hierarchical SDN controllers, each
of which is responsible for domain control of IP or optical
networks in multiple domain networks.

The offered interfaces are the following:

o CSO interface type 1 is referred to as the Service Trigger
Interface. This interface shall be able to describe service
requirements, taking into consideration DC and network
requisites.

o CSO interface type 2 is referred to as the DC Resource
Reservation and Monitoring Interface. This interface on
a high level abstracts a DC level resource abstraction as

well as a host/server level resource abstraction needed per
application.

e CSO interface type 3 is referred to as the Network
Resource Reservation and Monitoring Interface. This
interface should provide several functionalities such as:
a) abstraction of the network resource information of
the operators transport networks providing DC inter-
connection; b) service connection reservation request;
¢) monitoring data and measurement pertaining to the
service connection among the key requirements.

o CSO interface type 4 is referred to as multi-domain CSO
interface.

III. PROPOSED ACTN/CSO JOINT ARCHITECTURE

Figure 3 shows the proposed architecture, which is able
to jointly orchestrate IT and network resources. It consists
of four main building blocks: the customer application, CSO
service orchestrator, DC controller and Multi-domain Service
Coordinator (MDSC). The CSO service orchestrator offers
the NorthBound Interface (NBI) for the dynamic service
deployment, considering the necessary joint orchestration of
IT and network resources.

Coupling the ACTN with the CSO, an end-to-end automated
orchestration of services/applications is made possible with
the joint optimization of cloud and network resources the
applications consume. The MDCS of the ACTN architecture
acts as a network orchestrator of multi-layer and multi-domain
networks. A CSO Orchestrator is able to request virtual
networks to each MDSC. The CSO is the entity that has
the application requirements knowledge and the necessary
cloud/DC resources associated with the application. A CSO in
one operator domain interacts with another operator domains
CSO as the applications are provided across multiple operator
domains.

The CSO service orchestrator is responsible for peer coor-
dination with other CSO service orchestrators in other admin-
istrative domains. Moreover, each CSO service orchestrator is
responsible for its domain network and cloud resources. In the
following subsections, CSO service orchestrator is detailed.

The DC  controller is  responsible for the
creation/migration/deletion of VM instances (computing
service), disk images storage (image service), and the
management of the VM network interfaces (networking
service). The computing service (e.g., Nova in OpenStack) is
responsible for the management of the VM into the compute
hosts (i.e., hypervisors). A compute service agent is running
in each host and controls the computing hypervisor (e.g.,
KVM) responsible of the creation/deletion of the VMs. The
image service (e.g., Glance in OpenStack) handles the disk
images which are used as templates for VM file systems;
it also operates in a centralized manner by maintaining
a copy of all the disk images in the DC controller. An
image-service agent is running in each host to request the
download of images when a new VM instantiation requires
it. It also permits to create new images of the currently
working instances, a process known as snapshotting, which



is used for VM migration. Finally, the connectivity between
VMs and virtual switches inside the hosts is managed by the
networking service (e.g., Neutron in OpenStack). It creates
the virtual interfaces, attaches them into the virtual switches,
such as OpenVSwitch, and it offers a DHCP service for
the VMs to get the assigned IP address. The CSO service
orchestrator controls the DC controller through a RESTful
API (e.g., OpenStack API), which is used to trigger the DC
controller actions and to get the necessary information about
the running VM instances.

The MDSC is introduced in order to support end-to-end
connectivity by orchestrating the different network technolo-
gies or control domains. In the proposed network architecture,
the inter-DC network is controlled using IETF TEAS topology
[2] and tunnel [3] data models using RESTconf protocol [8].
We have based the MDSC architecture on the IETF ABNO
[9]. The ABNO is the IETF reference architecture for SDN
controllers, where it reuses standardized components, such
as path computation element (PCE). The Topology Server,
included in the ABNO, is the component responsible of
gathering the network topology from each control domain and
building the whole network topology which it is stored in the
Traffic Engineering Databased (TED). The TED includes all
the information about network links and nodes, and it is used
by the PCE for calculating routes across the network. The
Virtual Network Topology Manager (VNTM) is the responsi-
ble for managing the multi-layer provisioning. In the proposed
architecture, the VNTM will arrange the set-up of an optical
connection and offer it as a L2 logical link to satisfy the L2
connectivity demand. The Provisioning Manager implements
the different provisioning interfaces to push the forwarding
rules and the establishment of segments into the data plane.
Flow server stores the connections established in the network
into a FlowDB. Finally the Network Orchestration Controller
handles all the processes involved inside the MDSC to satisfy
the provisioning of end-to-end connectivity.

A. Customer Network Service and Inter-CSO Peering model

Figure 4 shows the customer view offered from CSO service
orchestrator 1 to the Customer application. A virtual network
is provisioned using ACTN, through requesting several VN
members. Each VN member is an e2e tunnel from the cus-
tomer perspective. It can be observed that the served VN is an
abstract construct on top of Transport Network 2.B and 1.B,
each from a different domain and controlled by a different peer
CSO service orchestrator. The costumer application only has
the necessary information regarding the deployed application
and the VN interconnecting it. In this case the customer
application is a vDPI, where a span port (where the traffic to be
analyzed is captured) is interconnected to the vDPI application
running in DC1.

B. Proposed CSO service orchestrator architecture

Figure 5 shows the internal architecture for CSO service
orchestrator. It can be observed that the main component is
the internal orchestrator, which is the responsible for providing
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Fig. 5. Proposed CSO service orchestrator architecture

the necessary workflows in order to deploy, modify and tear
down services. On top, four NBIs are offered:

1) CSO Service: This interface is offered for the end-user.
It provides network intents and compute intents in order to
scale in/out the requested service, which might include several
applications.

2) CSO-DC: This interface is used to provide computing
and storage resources to end-user and to other CSO service
orchestrators. It provides an abstraction to OpenStack API,
in order to offer a generalized compute and storage service,
which might be offered using different underlying controllers.

3) ACTN VN: 1t provides VN resources to end user and
to other CSO service orchestrators. A list of access points is
provided, which represent the possible end points of the VN
members.

4) TE Topology: A more detailed view of network topology
might be obtained using this interface by a peer CSO in order
to perform better network resource optimization.

The CSO database (DB) is used to keep synchronized all the
information related to peer CSOs, as well as the information
regarding the underlying controlled DCs and MDSCs. Finally,
the Network, DC, and CSO manager are the responsible for
each of the underlying resources, and they use the necessary
plugins (to consume the NBI defined for each OSS, such as



ONOS and OpenStack).

C. Resource allocation algorithm which considers Compute
and Network resources

A heuristic algorithm for the CSO has been developed in
is further explained in [10]. Once the CSO receives a request,
it allocates the necessary compute and networking resources
by using the previously recovered information. The CSO
heuristic algorithm receives the following inputs: Network Ser-
vice requested (including compute requirements, and network
interconnections and span ports). The algorithm outputs are the
VM allocation per DC, and the necessary VM interconnections
though transport networks.

D. Fully Automated Service workflows

Figure 6 shows the information recovery workflow from
the CSO service orchestrator 1 (CSOI1) perspective in order
to discover all the cloud and network available resources in a
peer hierarchical approach as has been presented in [11]. Four
steps are included in this process:

1) Discovery of underlying DC resources using OpenStack
API [12] towards DC controller.

2) Discovery of underlying Network resources using TE
Topology towards MDSCI1.

3) Discovery of peer CSO service orchestrator 2 (CSO2)
DC resources using CSO DC interface. CSO2 will
initiate discovery of underlying DC resources.

4) Discovery of available access points in CSO2 in order
to provide network resources.
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Figure 7 show the message exchange in order to dynami-
cally deploy a service, such as the depicted in the reference
scenario (Fig. 3). It consists of the following steps:

1) A customer requests a service to CSO1.

2) The resource allocation algorithm is triggered and allo-
cates the necessary VM in DCI.

3) It also computes the necessary virtual network mem-
bers, and it triggers the virtual network creation. CSO1
requests to CSO2 a virtual network, in order to reach
the requested span port. CSO2 forwards the request to
the MDSC under its domain.

4) A virtual network is directly requested to MDSC1. Each
request triggers the creation of a TE tunnel.

5) Finally, the CSOL1 offers the resource view to the cus-
tomer, as seen in Figure 4.
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Fig. 7. Message exchange for provisioning service

IV. EXPERIMENTAL DEMONSTRATION

The proposed architecture has been validated in the Cloud
Computing platform of the ADRENALINE Testbed. The
OpenStack Havanna release has been deployed into five phys-
ical servers with 2 x Intel Xeon E5-2420 and 32GB RAM
each, one dedicated to the cloud controller and the other
four as compute pool (hypervisors) for VM instantiation [13].
The network resources have been emulated using mininet and
ONOS, on top of which we have included an agent to provide
the necessary TE topology and ACTN VN interfaces. The CSO
service orchestrator has been developed using python and its
interfaces how been generated using swagger codegen.

In Figure 8, a JSON object of the requested service can be
observed. The span port is included in the access point array, as
well as the network and compute intents (including bandwidth
and flavor, respectively). The application to be deployed (in
this case VDPI) is described in app-instance array.

Figure 9 shows the HTTP conversation between CSO1 and
CSO2 service orchestrators at their initialization. Firstly, it can
be observed how CSO1 loads the information from underlying
DC controller 1 (OPS1). Secondly, CSO1 requests to MDSC1
the topological network information. Thirdly, DC status of
resources is requested to CSO2. Finally, access points are
requested.

Figure 10 shows the capture HTTP message exchange
between CSO1 and CSO2 in order to provision a service
requested by client. Firstly, we can observe the requested
service. Secondly, A VM is deployed in order to support the
requested application. CSO1 checks the status of the VM until
the VM is fully available. Thirdly, CSO1 request to MDSC1
the creation of a VN. Fourthly, CSO1 requests CSO2 the
creation of a VN, considering the span access point. Finally,
the service is provided to the client.

It can be observed in Figure 10 that the setup delay to
provision a service is of 14.7 seconds, being the main delay
contributor, the span of the VM to deploy the requested
application. The necessary networking resources have been
allocated in 132 milliseconds.
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V. CONCLUSION

Several innovations are presented in this paper. An inter-
CSO peer interface has been introduced, by providing de-
scriptions to consider DC/cloud resources and VN resources.
Internal CSO service orchestrator has been described. Also,
SDN controller support for TEAS Topology and ACTN VN
interfaces has been demonstrated. Finally, a proof of concept
has been experimentally demonstrated in order to validate the
proposed architecture.

As further work, scalability of the proposed architecture
should be addressed, in terms of necessary setup requests, as
well as scale in/down mechanisms for the requested resources.
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