
Open Source Netphony Suite: Enabling Multi-layer
Network Programmability

V. López, R. Jimenez, O. Gonzalez de Dios, L.M. Contreras, J.P. Fernandez Palacios
Telefónica gCTO

Ronda de la Comunicación s/n 28050 Madrid. Spain
Corresponding email: victor.lopezalvarez@telefonica.com

Abstract—Network operators must deal with multi-layer

architectures in their production networks. Not so much time
ago, network operators were delivering the IP traffic using ATM.
ATM protocol was used to aggregate end-user traffic coming
from DSL connections. This traffic was transported Synchronous
Digital Hierarchy (SDH) as the standard transport technology for
fiber-optic transmission systems in backbone networks. There
are still networks operating this way. However, current
deployments are based on an IP/MPLS layer, either on their own
(using dark fiber) or supported by an optical switching network
(WDM, OTN, etc.). The IP/MPLS switching and routing are the
layers that take advantage of statistical multiplexing and
maximize the utilization of the optical links created in the
underlying layer.

This multi-layer architecture requires a network
programmability layer that enables the control and management
of the IP and the optical resources. The advent of distributed
protocols to deploy the Internet, lead on many advantages. The
main one is the resiliency capability of a network, where each
individual node can make their own decisions. On the other
hand, a central intelligence enables to have a complete network
view to propose optimal solutions to improve the resource
utilization. Our proposal of multi-layer network
programmability contains a hybrid approach to lever on the
advantages of both paradigms. In terms on network protocols,
there are to main trends binary versus REST-based. Our view is
that binary protocols improve the performance at the low levels
on the network, while REST-based APIs enables a faster
development and network interoperability.

The Open Source Netphony suite is composed by a GMPLS
control plane to emulate the network elements control, a Path
Computation Element with active and stateful capabilities, a
Topology Module capable of importing and exporting TE
information in different protocols as well as an Application-based
Network Operations (ABNO) controller. This framework enables
multi-layer programmability for IP and optical networks.

Keywords— Multi-layer networks, ABNO, PCE, SDN control,
programability

I. INTRODUCTION
Network operators have deal with multi-layer architectures

in their production networks since they were deployed. To
provide DSL service to the customers, network operators were
delivering the IP traffic on top of ATM. ATM protocol was
used to aggregate end-user traffic coming from the DSL

connections and it was delivered to Edge IP routers. The fiber
rings had Synchronous Digital Hierarchy (SDH) equipment as
the standard transport technology for optical systems. There are
still networks operating this way. However, current
deployments are based on an IP/MPLS layer, either using dark
fiber or optical switching network (WDM, OTN, etc.). This
approach helps the operator to take advantage of the statistical
multiplexing at the IP/MPLS layer, while the optical
transmission improves the fiber utilization and provides a
massive capacity.

The explosion of landline and mobile broadband has
imposed an unprecedented traffic growth in telecommunication
networks, with very high cumulative annual growth rates.
Recently, Telefonica has seen how its number of customers has
not increased at the same speed than the traffic demand. There
are two main reasons: the economic crisis and the competition.
Both factors have pushed Telefonica to do a huge investment in
fiber infrastructure in order to speed up the deployment, while
increasing the quality of the access portfolio. This factor has
clearly impacted in the fiber access evolution in Spain (Fig. 1),
where the million users goal was exceeded in 2014. This value
was duplicated in 2015, moving from 1.590.990 users in 2014,
to 3.161.302 in 2015. This huge increment of the access
technology impacts on the capacity of the backbone networks,
thus justifying the optimization of the IP/WDM technologies to
maintain the network costs.

Fig. 1 FTTH users in Spain [1].

This paper is organized as follows: Section II introduces
existing Open Source Frameworks, Section III explains the
Netphony architecture and its components. Section IV presents
some use cases validated with the platform. Section V
demonstrates the architecture working with the Transport API
as solution for SDN environments. Finally, Section VI
concludes this paper.

II. EXISTING OPEN SOURCE FRAMEWORKS
This section presents the most known Open Source
frameworks, which can provide multi-layer control. There is a
survey in [2] which provides a comprehensive and detailed
analysis of the available SDN frameworks. There exists a large
amount of SDN frameworks, which support different types of
north- and south-bound APIs, different languages (C, Python,
Java, etc.), support for consistency checks and fault tolerance,
licensing scheme, and performances/scalability.

A. OpenDaylight
OpenDaylight is an open source platform maintained by the

Linux Foundation which provides network programmability to
enable SDN and NFV for networks at any size and scale [3].
OpenDaylight enables SDN through a combination of
components including a fully pluggable SDN controller, open
interfaces, multi-protocol plug-ins and applications. The core
part of the project, the modular, pluggable and flexible SDN
controller is implemented in Java, while the northbound and
southbound interfaces have clearly defined and documented
APIs. The platform supports both OSGi framework and
bidirectional REST for its northbound APIs: while OSGi is
used for applications that will run in the same address space as
the controller, REST APIs are used for applications that do not
run in the same address space (or even necessarily on the same
machine) as the SDN controller. Most important,
OpenDaylight is widely supported by both the industry and the
open source community; wide plethora of developers and users
participates to the development and consolidation of this open
source platform that it is licensed under the Eclipse Public
Licence EPL-1.0.

B. ONOS
Open Networking Operating System (ONOS) [4] is a large

open-source effort to develop an SDN controller supported by
a number of large companies. Like ODL, it is based on a Java-
OSGI framework, with network-facing south-bound modules
abstracting away unnecessary details and presenting a uniform
view to higher layers. Its code is designed to be modular,
configurable, protocol-agnostic, and expandable. This helps to
support the configuration of the underlying networks using any
protocol stack. ONOS is a multi-layer SDN control plane,
manage both packet and optical layer networks, with multiple
interfaces, equipment types, and protocols.

C. Open Source PCE
The Open Source PCE is the first Open Source emulator of

the PCE architecture [5]. Developed at Institut für
Datentechnik und Kommunikationsnetze, TU Braunschweig,
the PCE Emulator provides a framework for testing PCE
capabilities in real network environments, fully extensible and
designed to facilitate and enhance PCE research. The PCE
Emulator is a free-to-use, licensed under the GNU GPL v3
license, and is publicly available for research and development
use. The PCE emulator provides an extensible framework
under which components of the PCE server and clients can be
developed and extended in order to facilitate research and
development activities in the PCE architecture. The Emulator
has been developed in Java and currently consists of a

complete PCE server implementation including protocol
support according to RFC 4657, asynchronous network I/O,
session management and support for extensible path
computation and topology update mechanisms. The current
framework provides support for basic path computation and
session management, and efforts are on towards incorporating
the full session management features along with standardized
topology representation models inside the PCE.

The PCE Emulator has been developed in Java and is
compatible with Java v1.6. The emulator was designed with
extensibility in mind and as a result uses a modular
architecture, which segregates the implementation of the major
components of the PCE.

D. DRAGON
Dynamic Resource Allocation in GMPLS Optical

Networks (DRAGON) is a project funded by the
National Science Foundation in the US, is focused on the
provisioning of dynamic, deterministic end-to-end
network transport for high-end applications on an inter-
domain basis and across heterogeneous network
topologies [6]. Although it does not consider the
communication between the IP and carrier-grade
management ecosystems, DRAGON supports UNI, so it
can provision across network boundaries and differing
network technologies with authentication, authorization,
and accounting.

III. NETPHONY ARCHICTECTURE
The Netphony [8] is based on the IETF Application-Based

Network Operations (ABNO) architecture [7]. The purpose of
this architecture is to facilitate different implementations while
offering interoperability between implementations of key
components, and easy interaction with the applications and
with the network devices. An implementation of this
architecture may make several important decisions about the
functional components. Multiple functional components may
be grouped together into one software component. For
example, an Active, Stateful PCE could be implemented as a
single server combining the ABNO components of the PCE,
the Traffic Engineering Database, the Label Switched Path
Database, and the Provisioning Manager. These components
could be distributed across separate processes. There could be
multiple ABNO Controllers, each with capability to support
different classes of application or application service.

The Netphony project is split in some libraries in other to
facilitate the integration and extension with other frameworks.
Following sections presents the modules and its functionality.
The references to each repository can be found in the project’s
wiki [8].

A. Networking Protocol Library
This library contains the java implementation of the main

networking protocol stacks that enable the network control
plane functions: PCEP protocol, RVP-TE protocol, OSPF-TE
and BGP-LS. This protocol library can be integrated by any
software requiring to use of these protocols.

B. Networking Emulator Library
This repository contains a reference Java implementation of

a Transport Network Emulator. It includes the emulator of a
transport Node with GMPLS control capabilities. The
Transport Node Emulator has a RSVP-TE process and an
OSPF-TE daemon, as well as PCEP interface for remote
instantiation of LSPs. The PCEP interface is stateful, so it
reports its LSPs through that interface. The emulator is also
distributed packaged in a virtual machine that can be found at
[8].

C. Topology Module
The next library has two main features, a Traffic

Engineering Database (TEDB) and a BGP-LS Peer. The TEDB
stores in memory a graph with nodes, links and their traffic
engineering attributes. The netphony-topology library also
includes a BGP-LS speaker (BGP-LS peer). The network-
protocol library only included the protocol encoding, but not
actually an executable. BGPPeer is the reference
implementation of the BGP-LS speaker, acting as a BGP4 peer,
it initiates BGP connections with its designated peers and,
simultaneously, waits for incoming connections. The topology
module can import the topology using other protocols like
OSPF.

D. Path Computation Element (PCE)
The PCE is defined in [9], and it is the unit that handles the

path computation across the network graph. It can calculate
traffic engineered end-to-end paths in order to optimize the
optical spectrum consumption within the network. The PCE is
capable of computing a TE LSP by operating on the TED
regarding to the available bandwidth and network constraints.
Coordination between multiple PCEs operating on different
TEDs is also required for performing path computation in
multi-domain (for example, inter-AS) or multi-layer networks.

This repository contains two implementations of a Java
based Path Computation Element, a domain PCE and a Parent
PCE. The repository also contains two Path Computation
Clients, QuickClient, which by means of command line options
can generate and receive PCEP messages.

E. Netphony ABNO
This repository contains a reference implementation of the

main components of the ABNO Architecture [7]. In particular,
the main components are the ABNO controller and
Provisioning Manager. The PCE is located the previous
repositories. Following, the two modules are introduced.

The ABNO Controller is the main component of the
architecture and is responsible of orchestrating, and invokes the
necessary components in the right order. It listens for request
from the NMS/OSS and selects the appropriate workflow to
follow in order to satisfy each request.

The Provisioning Manager is the unit in charge of
configuring the network elements so the LSP can be
established. It can do so both by configuring the resources
through the data plane or by triggering a set of actions to the
control plane.

There are several protocols that allow the configuration of
specific network resources such as Openflow, Netconf, CLI
and PCEP.

F. tNetwork graphical library
TID released a JavaScript visualization library to create and

draw network graphs. It is SVG-based and HTML 5
compatible. This is a free library publicly available on GitHub,
licensed under the GNU Affero license. It is available at the
following location: https://github.com/telefonicaid/cne-
tnetwork. This library is a complement of the Netphony
framework and it allows to show the topological information.
Fig. 2 shows an example of Telefonica of Spain reference
network using the GMPLS control plane from Netphony.

Fig. 2 tNetwork utilization to display the GMPLS control

plane

IV. END-TO-END ORCHESTRATION
Distributed computing capacity is becoming the common

norm for efficient service provision by a telco operator, not
only for external customers with offerings based in cloud (like
storage, virtual machines, etc) but also for internal purposes
(for instance, exploring the capabilities of virtualizing and
distributing existing network functionalities on core platforms
for fixed and mobile services). In such cases, to keep the
latency to a minimum is crucial to guarantee a service
experience as in a non-distributed case, and then optical
transport technologies become a key part of the solution.

This distributed environment usually traverses more than a
single network, and even within a network, more than one
single domain. In order to compose and end-to-end service,
orchestration capabilities are needed at least for configuring
each edge device for every domain. When the services pass
through multiple domains the number of manual interventions
increases, and this gets even worst considering multiple
technologies in the network (as is the case of distributed
computing capabilities connected by means of optical
equipment).

The solution addressed in the project to automate inter-site
connectivity over different network segments (metro, core,
data-center) is based on the combination of distribute control
plane protocols and centralized SDN concepts.

Control plane protocols reduce the complexity of the
building blocks in the ABNO, while centralized entities
provide the orchestration and centralized view that are required
in some steps of the operation. The centralized entities are clear
thanks to the ABNO architecture. Regarding distributed
technologies there are two candidates for different scenarios:
Seamless MPLS and GMPLS.

• Seamless MPLS. Seamless MPLS is a multidomain
solution, which can be used to create services in
multiple ASes. In the case of provisioning a Seamless
service, the ABNO architecture can be used to do just
a request to the ABNO controller and the
configuration can be done automatically without more
human interaction.

• GMPLS. GMPLS is a set of protocols that enables the
distributed computation and establishment of
connections in the network. From a transport point of
view, this set of protocols facilitates the procedures in
the network in multidomain environments. In the case
of optical networks, the ABNO architecture can be
used to do a remote LSP instantiation as proposed in
[6] to set-up an LSP in the network.

Although these protocols enables the end-to-end
provisioning of services in certain technological islands. When
there are multiple technologies in the network, the number of
interventions can increase. Let us assume that some services
are virtualized, so there is an OF domain for data center and
pseudowire is terminated in a virtual AN, as depicted in Fig. 3.
In this case, ABNO has to compute the E2E path and to carry
out the configuration not only the PEs, but also Ethernet
switches within the datacenter.

Fig. 3 End-to-end orchestration use case

V. WORKFLOW TO VALIDATE THE USE CASE
The following steps are required to provision bandwidth

using the ABNO:

0. The initial trigger for this use case is a request from an end
user via an NMS or an application.

1. The NMS sends the information to the ABNO controller
with the two switches identifiers (Switch1 and Switch2)
and the traffic parameters (e.g. bandwidth) required for the
circuit.

2. When the ABNO controller receives the request, it
identifies if this is a L2 or a L2 request from the
parameters. In this case, the ABNO asks to the L2 PCE for
a path with enough bandwidth in the L2 topology. If there

is not a path in the L2 topology a NO PATH is sent to the
ABNO. If there is a path move to step 10.

3. As there is no path or not enough bandwidth in the L2
topology, the ABNO controller tells VNTM to create a
link between the two switches (Switch1 and Switch2).

4. The VNTM requests the L0 PCE a path between the two
optical nodes connected to the two switches. If the L0 PCE
is able to find it, it sends the path back to the VNTM.

5. VNTM has the interlayer information and the L0 path. This
information is sent to the Provisioning Manager to
configure the link.

6. The Provisioning Manager queries the Topology Module
for the description of each node.

7. Depending on the technology and configuration mode,
Provisioning Module selects a different protocol to
complete the request. There are some options: PCEP, CLI
to the router and UNI or even OF. For this demo, PCEP is
used to do a remote LSP instantiation in the GMPLS
nodes.

8. Once the path in the optical layer has been established, the
Provisioning Manager notifies the VTNM. Similarly,
VTNM notifies the ABNO controller.

9. ABNO controller asks the L2 PCE for a path with enough
BW in the L2 topology. Now there is bandwidth to cope
with the request, so the L2 PCE responds to ABNO with
the path.

10. The ABNO controller requests the Provisioning Manager to
configure the L2 service by establishing the path.

11. The Provisioning Manager queries the Topology Module
for the description of each node.

12. Depending on the technology and configuration mode,
Provisioning Module selects a different protocol to
complete the request. To configure the IP layer there are
some options: PCEP, CLI or NetConf. For this demo, a
request is sent to a Floodlight controller, which configures
the switches via OF.

13. Once the path has been established, Provisioning Manager
notifies the VTNM.

14. Similarly, ABNO controller advertises the NMS.

Fig. 4 shows the steps in the modules of the ABNO
architecture.

OSS/NMS&/&Applica-on&Service&Orchestrator&

ABNO&Controller&Policy&
Agent&

ALTO&
Server&

Topology&
Module&

Client&Network&Layer&

Server&Network&Layer&

I2RS&
Client&

L2&
PCE&

1&

VNTM&

L0&
PCE&

8&

4&

7&

9&

10&

11&

2&

5&

0&

14&

Provisioning&Manager&
10&

12&

13&
OAM&

Handler&

3&

6&

Fig. 4 Workflow for the E2E orchestration use case mapped

in ABNO architecture

Fig. 5 explains this use case with a temporal workflow
presenting the modules involved in each step and the actions
done.

Fig. 5 Temporal workflow for the E2E orchestration use

case

VI. EXPERIMENTAL VALIDATION
BGP-LS extends the BGP Update messages to advertise

link-state topology thanks to new BGP Network Layer
Reachability Information (NLRI). The Link State information
is sent in two BGP attributes, the MP_REACH (defined in
RFC 4670) and a LINK_STATE attribute (defined in the BGP-
LS draft). To describe both the intra and inter domain links, in
the MP_REACH attribute, we use a Link NLRI, which
contains in the local node descriptors the address of the source,
and in the remote descriptors, the address of the destination of

the link. The Link Descriptors field has a TLV (Link
Local/Remote Identifiers), which carries the prefix of the
Unnumbered Interface. In case of the message informs about
an intra-domain link, the standard traffic engineering
information is included in the LINK_STATE attribute.

Fig. 6 shows a trace where there is a BGP speaker in
192.168.1.1 which is sending the BGP-LS to the IP
192.168.1.2. We captured the traffic of are two nodes
(192.168.1.3 and 192.168.1.4) that are signalling OSPF
information.

Fig. 6 BGP-LS message Exchange

Once the modules obtained the topology, the workflow can
be executed. Fig. 7 shows the PCEP messages exchanged
between the ABNO modules. Note that all the modules of the
ABNO are running in the same physical host and the packets
where captured in that host. This workflow is triggered based
on the NMS request to the ABNO.

Fig. 7 PCEP messages exchanged between ABNO modules

When a PCInitiate message is received by the PM it asks
the TM for information about each node. The TM gives for
each IP in the ERO: the layer of the node, the configuration
protocol (CLI, NetConf, OF or PCEP) and the specific
parameters to configure the node. In the case of the optical
layer it will reply with PCEP. This will make the PM to send a
PCE message to the head end node, which will create a RSVP
message with an ERO with the path. Fig. 8 shows the PCEP
and RSVP messages that the first network element exchanges
to setup a path.

Fig. 8 PCEP messages exchanged between ABNO modules

VII. CONCLUSIONS
Network operators must deal with multi-layer architectures

in their production networks. Current deployments are based
on an IP/MPLS layer over an optical infrastructure (WDM,
OTN, etc.). Both layers allow to take advantage of statistical
multiplexing and achieve unprecedented capacity thanks to the
underlying layer.

This multi-layer architecture requires a network
programmability layer that enables the control and
management of the IP and the optical resources. Our approach
of multi-layer network programmability contains a hybrid
approach to lever on the advantages of both paradigms. In
terms on network protocols, there are to main trends binary
versus REST-based. Our view is that binary protocols improve
the performance at the low levels on the network, while REST-
based APIs enables a faster development and network
interoperability.

The Open Source Netphony suite is composed by a
GMPLS control plane to emulate the network elements control,
a Path Computation Element with active and stateful
capabilities, a Topology Module capable of importing and

exporting TE information in different protocols as well as an
Application-based Network Operations (ABNO) controller.
This framework enables multi-layer programmability for IP
and optical networks.

ACKNOWLEDGMENTS
The work leading to the Netphony Orchestration suite

comes from a set of EU Research Initiatives Telefonica
Innovation program and PhD Thesis. This work was partially
supported by ACINO European H2020 project, Grant Number
645127, http://www.acino.eu .

REFERENCES
[1] Comisión Nacional de los Mercados y la Competencia, “Annual Report

2016”, 14-10-2016, http://data.cnmc.es/
[2] D. Kreutz, F. M. V. Ramos, P. Verissimo, C. E. Rothenberg, S.

Azodolmolky and S. Uhlig, “Software-Defined Networking: A
Comprehensive Survey”, in Proceedings of the IEEE, vol. 103, no. 1,
pp. 14-76, Jan. 2015.

[3] OpenDayLight, http://www.opendaylight.org/
[4] ONOS, http://onosproject.org/
[5] Open Source PCE, https://www.tu-

braunschweig.de/kns/projects/opensourcepce/
[6] DRAGON, http://cnl.gmu.edu/dragon/
[7] D. King and A. Farrel, RFC7491 “A PCE-Based Architecture for

Application-Based Network Operations”.
[8] Netphony Suite https://github.com/telefonicaid/netphony-abno/wiki
[9] A. Farrel et al. “RFC4655 - A Path Computation Element (PCE)-Based

Architecture”.
[10] A. Aguado, V. López, J. Marhuenda, Ó. González de Dios and J. P.

Fernández-Palacios: ABNO: a feasible SDN approach for multi-vendor
IP and optical networks , in Journal of Optical Communications and
Networking, February 2015, Vol. 7, Iss. 2, pp. A356–A362.

