
GMPLS Network Control Plane Enabling
Quantum Encryption in End-to-End Services

A. Aguado1, V. Lopez2, J. Martinez-Mateo1, M. Peev3, D. Lopez2 and V. Martin1

1Center for Computational Simulation, Universidad Politécnica de Madrid 28660 Madrid, Spain
2Telefonica Investigacion y Desarrollo, Ronda de la Comunicacion s/n 28050 Madrid. Spain

3Huawei Technologies Duesseldorf GmbH, Riesstrasse 25, 80992 Munchen. Germany
(email: a.aguadom@fi.upm.es, victor.lopezalvarez@telefonica.com, jmartinez@fi.upm.es,

momtchil.peev@huawei.com, diego.r.lopez@telefonica.com, vicente@fi.upm.es)

Abstract— Quantum key distribution (QKD) is a novel
technology that can be seen as a synchronized source of
symmetric keys in two separated domains that is immune to any
algorithmic cryptanalysis. This technology makes impossible to
copy the quantum states exchanged between two endpoints.
Therefore, if implemented properly, QKD generates keys of the
highest security based on the fundamental laws of quantum
physics. No algorithmic advance would force a change of
technology, as opposed to current public key cryptographic
protocols, that rely on the complexity of certain mathematical
problems. These protocols are at risk due to the advances in
quantum computing and should be changed. On the other hand,
network services are increasingly requesting more flexibility and
network resources. One of the most desired capabilities is having
higher level of security for the transmission between remote
premises. In this work, we propose a node architecture to provide
QKD-enhanced security in end-to-end (E2E) services and analyze
the control plane requirements in order to provide such services
in transport networks. This work defines and demonstrates for
the first time extensions for generalized multi-protocol label
switching (GMPLS) networks. Results show how these new
services could be integrated in existing operators’ control plane
architectures.

Keywords— Network Management, Quantum Key Distribution,
Software Defined Networking, Generalized Multi-Protocol Label
Switching, Path Computation Element.

I. INTRODUCTION
NETWORK services are nowadays evolving on a daily basis.
They are moving from a traditional static approach, to a more
flexible and dynamic one. Traditional services usually require
several days (or even weeks) to be established, while new
applications and services change their requirements much
faster. This evolution, aiming to cope with this dynamicity, is
possible thanks to a software-based process. This novel
network paradigm, called software defined networking (SDN),
permits decoupling the control plane (traditionally running in
the core of a network device) from the data plane, managing
network services from centralized entities (network
controllers).

Security is an increasing concern in communications
networks, as critical information travels across an entire
infrastructure. However, network security has not been the
result of a systematic effort but more as a series of ad-hoc
solutions. During some time, even arguments that have been

demonstrated to be false —like the intrinsic security of optical
fibers— were used as a reason to delay or rule out the
implementation of security mechanisms. Today, networks are
more complex and, especially with SDN, much more
configurable. The security risks are correspondingly larger,
therefore, security in network infrastructures must be
enhanced.

QKD technology can be regarded as two sources of
synchronized random numbers that are separated in space,
with the added property that there is a security demonstration
that allows to upper bound the maximum information that is
leaked out of these two sources. The security of the symmetric
keys produced by systems built around this technology is, by
principle, immune to any algorithmic cryptanalysis. QKD can
be seen as a new opportunity for operators and infrastructure
providers as it can enable the provision of new, high security
encryption in end-to-end (E2E) services. This work proposes
for the first time a new QKD enhanced network device
providing encryption for E2E services, analyzes its
requirements from the control plane perspective and shows
how these nodes can be easily integrated in a GMPLS
controlled infrastructure. We work under the assumption of
having an underlying network of connected QKD devices in
place. Our goal is to develop higher level protocols that allow
for E2E QKD-key based encryption services. To the best of
the author's knowledge, the only related work with SDN and
security for optical networks is [1], where work on the North
Bound Interface (NBI) exposing security parameters to the
applications is presented. This work is complementary since it
allows a GMPLS control plane below the network controller,
used to synchronize the QKD-generated keys.

The paper is organized as follows: A brief introduction to
QKD is presented in Section II, the basic structure of a
“quantum encryption” node and its integration in a QKD
network are discussed in Section III. Section IV describes the
control plane architecture and network protocols considered for
this work. In Section V the workflow in an E2E GMPLS
architecture is presented. Section VI elaborates about the
emulation platform and the implementation of the tests.
Finally, in Section VII, results of our emulation are presented
and conclusions are summarized in Section VIII.

II. QUANTUM KEY DISTRIBUTION
Quantum key distribution (QKD) [2] is a means to add an

unbreakable physical layer to an optical network. Unbreakable
is used here in the sense that it can be mathematically proven

This work was partially supported by the Spanish Ministry of Economy
and Competitiveness, MINECO under grant CVQuCo, TEC2015-70406-R
and by ACINO European H2020 project, Grant Number 645127,
http://www.acino.eu.

to be secure, i.e. it is, in principle, an information theoretic
secure (ITS) primitive. Thus, a correct implementation can
deliver keys of the highest security. However, QKD has some
limitations that do not affect the conventional cryptosystems,
whose security is based on algorithmic complexity
assumptions.

The same no-cloning property that the laws of physics
imposes on quantum signals and that confers the ITS security
to QKD protocols, means that the signals cannot be amplified.
Hence, any kind of amplifiers or active components that can
modify the state of these signals must be bypassed, thus
setting a limit to the maximum distance (or absorptions) that a
QKD protocol can tolerate.

When transmitting a signal through a not completely
transparent medium, it suffers an exponential attenuation. In
the case of an optical fiber and using the most transparent
window (1550 nm) this typically means a loss of about 0.2
dB/km. If the signal must pass through some other passive
optical components, these will add additional losses, another
0.2 dB per connector, 3 dB in a 1:2 splitter, etc. Modern QKD
devices can tolerate up to approximately 30 dB of losses,
which means that they are well suited to be used within a
metropolitan area or with links of up to 150 km. There have
been demonstrations going well beyond these limits, but this is
unrealistic either because of extremely low key rates or high
insecurity, since from a small amount of signals a high
security key cannot be extracted. In principle, so-called
quantum repeaters can be built, but the main component to be
developed, quantum memory, is still not available. These
devices will eventually avoid any absorptions/distance related
problems, but is a technology still years in the future. Given
the delicate nature of the quantum signals, the most reliable
way of transmission is to use a dedicated dark fiber as the
quantum channel. This is not a must, however, and previous
test-beds [3] have shown how to use a fiber shared by
quantum and classical channels and the tradeoffs involved.

Nonetheless, when considering real networks, the distance
limit has a relative importance as long as it is considered that
the task here is to connect the different security perimeters
between the different security domains in the network.
Operators define a security perimeter and assume that their
nodes are secured places. Distances between secure nodes [4]
are typically well within the QKD distance limits. Also, in
absence of quantum repeaters, this limitation can be
ameliorated by forwarding the keys using the trusted nodes
approach [5, 6].

Beyond the quantum channel, QKD requires a classical
channel. It is also assumed public, but it must be authentic.
The origin and integrity of the data must be preserved. On
installation, a first token is used to initiate the authentication
of the classical channel. After this phase, the same keys that
are created at both ends can be used to insure the continued
ITS authentication of the channel. Then, the continuous supply
of symmetric keys that QKD systems provide, can be used to
create authentication chains for the different services in the
network. Since they are symmetric keys, fast encryption
algorithms can also provide very high throughput capabilities
down to the packet level.

III. QUANTUM ENCRYPTION NODE
In a QKD enhanced network context, with E2E encryption

services, a network device with quantum encryption (QE)
capabilities should be able to communicate with the networks'
control plane, beyond a standard interface and through an open
one, certain additional characteristics. Note that, with QE we
mean an encryption scheme that uses the QKD generated keys.
More specifically, these devices should generate (or have
access to) a pool of keys to perform symmetric encryption,
expose unique IDs that identify quantum keys or sessions to
the network controllers and/or applications (northbound
interface) and perform switching and inline encryption.

Fig 1 Example of a GMPLS-enabled node with QE capabilities.

Fig. 1 shows an example of how a quantum enabled
network device could look like. A QE-capable device should
have access to a source of quantum keys. This can be
implemented in many ways, as there is still not a standard
protocol for QKD devices to expose their keys. We have used
the ETSI GS QKD 004 V1.1.1. API [7] to implement such
protocol. An optical device will allow the agent to choose
whether certain traffic should be encrypted or just forwarded to
the network. It will also allow to easily send the packets to a
traffic encryption device (e.g. a hardware security module).
These are commercial products ready in the market, authors in
[1] uses this kind of equipment. This set of hardware devices
and interfaces must be orchestrated from a central entity within
the domain, acting as a controller for the configuration. This
entity (agent) exposes information of a single node, abstracting
the multiple devices as one, and allows to be configured by
centralized systems using standard protocols (e.g. GMPLS,
OpenFlow, NETCONF). However, bringing quantum
encryption awareness and the capability of providing inline
encryption into a logically centralized control plane will
require to extend these protocols, since this will require new
information to be transmitted to perform routing and
capabilities dissemination.

IV. CONTROL PLANE ARCHITECTURE
The software defined networking (SDN) paradigm, based

on network programmability, decouples the network’s data

plane from the control plane. This allows operators to centrally
manage and dynamically setup, tear down and optimize
customer services in their infrastructures, all done via standard
protocols and interfaces. Different architectures and protocols
have been created to allow this process of decoupling the
forwarding decisions from the devices into a centralized
architecture. The path computation element (PCE) architecture
was presented in [8]. This architecture gathers a collection of
algorithms that are computationally difficult and that may
require special computational components and
synchronization with other domains to calculate E2E paths
over multi-layer and multi-domain networks. It can act in
passive (receiving path requests and providing responses) or
active mode (communicating with network devices to
configure the services). It can work as a standalone module,
cooperate with other PCE (east-west or parent-child mode
[9]), or be a part of a more complex architecture, such as the
application-based network operations (ABNO) [10,11].

In order to interact with the network devices, the PCE uses
multiple protocols. GMPLS is a family of protocols that
extends MPLS to cover time, space and wavelength division
multiplexing (TDM, SDM and WDM respectively) switching
technologies. It allows devices to share their traffic
engineering (TE) information (like reachability, link state,
router information, etc.) using protocols such as open shortest
path first protocol with TE extensions (OSPF-TE); signal
specific configurations across the network via resource
reservation protocol with TE extensions (RSVP-TE); or
communicate and receive responses or instructions from the
PCE via PCE communication protocol (PCEP). In order to
interact with the network devices, the PCE uses two protocols
PCEP (for LSP management) and OSPF-TE (for Traffic
Engineering information). This set of protocols allows the
PCE to orchestrate an entire network centrally, handling
network services and optimizing resources.

Fig 2 Workflow of the end-to-end quantum encryption in a GMPLS

network scenario.

V. PROPOSED WORKFLOW AND EXTENSIONS
Calculating and establishing E2E services in a GMPLS-

enabled network usually require several operations within the
network’s control plane. These operations can be divided into
three subgroups: information dissemination, path calculation-
configuration and signaling. For this, different components

communicate among each other via standard protocols, such
as OSPF-TE, BGP-LS, PCEP, RSVP, etc. Nodes within a
network expose their capabilities and reachability among
themselves and externally. A central management entity (in
our case, a PCE) calculates paths (and configure them if in
active mode), and the network nodes forward the
configuration (explicit route object, ERO) from the first to the
last node in the path.

Following the same scheme, our new QKD-based encrypted
services will require a subset of these operations and protocols
to be extended (or partially redefined). We have adjusted the
abovementioned subgroups to cover the service workflow (see
Fig. 2) in a GMPLS-enabled scenario, exposed below as
quantum encryption capabilities dissemination (no reachability
information has been extended), path computation and
signaling (key synchronization).

A. Quantum Encryption Capabilities Dissemination
Network nodes connecting to remote control plane entities

must expose information to be controlled and optimized in the
best way. This information includes, for example, number of
ports, switching/routing capabilities, supported bandwidth,
statistics, traffic engineering capabilities, etc. In this way, the
control plane central entity (controller/PCE), can build a graph
of the existing network and compute and optimize network
services to better use the available resources. Encryption
services (if centrally managed by a controller/PCE) require at
least a minimum information to be exposed from the network
devices that can perform such process. This information
should be gathered by the PCE, stored on its TE database
(TED), and then used when these services are computed.

The proposed extension to disseminate QE capabilities is
based on the RFC7770 [12], which defines OSPF extensions
for optional router capabilities. This extension, implemented
for OSPFv2, uses the router information (RI) opaque link state
advertisement (LSA) within an OSPF update message. The
opaque LSA contains a 4-bytes-long informational capabilities
TLV to expose, for example, whether a router is graceful
restart capable/helper, has TE support, stub router support, etc.
Following the same order than the RFC, we choose the first
unused bit (number 6) to expose whether a router is quantum
encryption (QE) capable or not. The PCE, under reception of
this bit, stores the capability on its TED.

B. Path Computation
The main purpose of the PCEP is to communicate a PCE

with a path computation client (PCC) or multiple PCEs. It is
composed by multiple messages defined to request path
calculation and its reply (PCRequest, PCReply) and path
instantiation in active mode (PCInitiate, PCReport), among
others to open, close and keep the PCEP session. In addition,
the initiation of the service deployment process in the network
differs depending on the mode of the PCE (active/passive,
stateful/stateless):
• A passive PCE receives PCRequests to calculate a path,

mainly from the PCC within a network device, and
responds PCReply messages including the ERO, which is
handled by the device.

• An active PCE can receive both PCRequest or PCInitiate
messages to calculate and/or instantiate the connectivity.
It can directly communicate with the network devices via
PCInitiate message to configure the path.

Both procedures are suitable for our use case. Therefore,
since most of the extensions directly affect the PCRequest
message and the ERO inside a PCEP message, we have
chosen the first one (passive PCE, with a source node asking
for a E2E QE service) to expose our work in a clearer way.

When a QE E2E service is required, a set of parameters
must be transmitted to the PCE in order to identify the service
and to perform the required computation. The set of
parameters we have utilized to identify the service includes:
• Session ID: ID to synchronize the keys in both ends of the

service. Its length is 64 bytes, following the standard
defined in [7] (key_handle).

• Destination: identifier of the destination endpoint of the
QE service. In our implementation, an IP(v4) address.

• Key length: Length of the key to be used to encrypt the
communication.

• Encryption layer: Layer to be encrypted between the
nodes (IP, Ethernet, Optical).

• Refresh type and value: type (e.g. time, amount of
information) and value to update keys used in a service.

• Algorithm: The encryption algorithm used for the
communication.

Fig 3 The proposed QE ERO subobject structure.

Handshaking these parameters between PCE and PCCs
must happen in two phases:
• The PCC sends the PCRequest with certain parameters to

consider in the path computation. These parameters are:
key length, destination, encryption layer, refresh type and
value and algorithm. This information is sent adding new
metrics in the metric list of the PCRequest.

• The PCE should respond with a path inside the PCReply.
This path contains new subobjects placed in the ERO just
after the subobjects identifying the nodes that have to
perform the encryption. They contain a session ID
(initialized as zero), key length, encryption layer, refresh
type and value and algorithm, as shown in Fig. 3.

Upon response, the source node analyzes the PCReply and
starts the signaling process (and the key synchronization, in
case of being source node of the QE service).

C. Signaling and Key Synchronization
When a PCReply or a PCInitiate message arrives to a PCC

of a network node, this node is in charge to start the signaling
process by extracting the ERO from the PCEP message and

transmitting it via an RSVP Path message. Other intermediate
nodes forward these messages down to the destination node,
getting the required configuration parameters from the
message. When this message arrives to the destination node,
assuming that no error has occurred, it responds back with a
RSVP Resv message, informing that all the necessary
resources have been reserved.

When performing quantum encryption, considering any
layer up to the application layer, one mandatory step is to
synchronize the keys in both sides. This process can be easily
done by exchanging IDs to identify the session, or the key in
both extremes through an open channel. RSVP is the best
candidate to automate the key synchronization process. It is
capable of forwarding the encryption requirements across the
path and return a confirmation (Resv message) if the resources
(keys) have been reserved, while the signaling process
traverses the network. This mechanism is defined as follows:
• The QE-capable source node finds itself inside the ERO,

and detects the new QE ERO subobject as well.
• This node decodes the session ID, sees that it is set to zero

(64 bytes) and extracts a new key and session ID
(key_handle) from the key server using an interface based
on ETSI GS QKD 004 v1.1.1 specification [7].

• The source node stores the key and injects the session ID
inside the QE ERO subobject of the destination node.

• The destination node receives the RSVP Path message,
finds itself inside the ERO and detects the QE ERO
subobject.

• As the session ID is not zero, the destination node extracts
the key using the session ID through the same interface as
above [7].

Both nodes extract the other parameters (encryption layer,
key, length, refresh type and value and algorithm) from the QE
ERO subobject as well, to be used afterwards by the device in
charge of the encryption. The QE service will finish its
deployment process when the source node receives the RSVP
Resv message. In this moment the keys would be available for
any upstream service, like AES or 3DES encryptors.

Fig 4 Logical representation of the set of nodes and messages used to

extract and synchronize keys.

VI. SCENARIO, IMPLEMENTATION AND EMULATION
PLATFORM

The emulated control plane scenario for this demonstration
is equivalent to the one shown in Fig. 2. It comprises five

GMPLS-enabled nodes (logically connected as shown in Fig.
2) and a PCE. We run an additional client that connects via
telnet to the first device to start the workflow. In addition to
this, nodes 1 and 5 are connected to “Alice and Bob” QKD
domains, providing keys in two different layers. We emulate
the ID Quantique Clavis2 3100 system by having a set of
predefined keys in two different nodes that provide IDQ3P
interfaces, which is the ID Quantique proprietary interface of
the Q3P protocol [13].

These two nodes communicate with two proxies that
provide, as a northbound interface, a protocol based on the
API defined in [7]. They synchronize the sessions maintained
between themselves and provide the session IDs (key_handle)
that are kept to extract keys until the service is finished.
Keeping the same session ID to extract keys in both sides is
convenient, as IDs can be mapped one to one to services. This
can be used to update keys dynamically in both extremes when
a service requires to do so. Fig. 4 shows the logical
connectivity between nodes 1, 5, and Alice and Bob domains.

Fig 5 Capture of the Dockernet GUI, showing the set of GMPLS

nodes (tn1-5), PCE, client (ubuntu1), proxies (etsiA-B), ID
Quantique devices and OVSs (dark nodes).

To perform this test, we have implemented a platform [14]
that allows the creation of virtual networks using Docker [15]
for the deployment of containers and Open vSwitches to
provide the required connectivity. Six IP domains are created
to have the traffic isolated (GMPLS control plain domain, two
domains to connect the nodes 1 and 5 to the proxies, two
domains to connect the proxies to the IDQ3P interfaces and an
additional one for the synchronization channel). Our control
plane topology is the one shown in Fig. 5, where the dark
nodes are OVS and the rest of them are containers running
either java or python processes.

Fig 6 Set of messages exchanged among nodes, and with the PCE.

The GMPLS agents and the PCE have been implemented in

Java, using Netphony [16] open source project. The IDQ3P
interface and the proxies have been implemented in Python.

Fig 7 Opaque RI LSA and Informational Capabilities TLV.

VII. EXPERIMENT AND RESULTS
The full set of required messages transmitted across the

GMPLS control plane is shown in Fig. 6. The first message is
an OSPF update from the fifth node (others are omitted),
which contains the router information opaque LSA, with the
traffic engineering capable and que QE capable bits set to 1
within the informational capabilities TLV (Fig. 7). The second
and third messages are the PCRequest and PCReply messages.

Fig 8 Metrics sent inside the PCRequest message for the QE service.

Fig. 8 shows the 4 metrics that define the service, included
as follows: (1) Encryption algorithm, Type: 253, Value: 10,
(2) Refresh Type: 252, Value: 1000, (3) Key length Type: 255,
Value: 32, (4) Layer of encryption Type: 254, Value: 2.

Fig 9 Explicit route object including the new QE ERO subobject.

Upon request, the PCE decodes the multiple metrics and
injects them in the QE ERO subobjects, together with an unset
session ID. Fig. 9 shows the ERO, which includes the new

defined ERO subobjects. Both (source and destination of the
QE service) are placed just after the subobjects that identify
the nodes with QE capabilities.

Fig 10 QE ERO subobject change to signal the session ID.

The last set of messages are RSVP Path messages (node 1
to 5) and RSVP Resv messages (on the opposite direction).
These messages contain the same ERO as the one that comes
inside the PCReply (Fig. 9). This ERO is maintained until the
last node of the path, except for the changes introduced by the
source node of the QE service. This node, by finding out the
requirement of establishing QE, extract a new key and a new
session ID (if previously set as zero), and modifies the QE
ERO subobject of the destination node, adding the new
session ID which is mandatory to synchronize the key in both
points. The process of signaling the session ID can be
observed in Fig. 10 where the first image shows the QE ERO
subobject received by the source node inside the PCReply
(third message) and the second shows the same object when
transmitted from node 1 to 5 inside the RSVP Path message.
The entire workflow from the PCRequest until the last RSVP
Resv message takes around 300 ms, bearing in mind that the
emulation was run in a single computer, with no other
processes running to increase the latency. Other messages
have been omitted to improve readability.

Finally, Fig. 11 shows a list of UDP messages within the
Alice and Bob domains which are used for key extraction,
synchronization between proxies and the IDQ3P messages.
The secret key throughput of state of the art QKD devices at
typical metropolitan distances is in the range of Mbps. Using
the acknowledged 2^40 of data per key limit for DES [17],
these secret key rates would allow to encrypt multi Tbps links
with a much higher security level than what is standard today.

Fig 11 Set of UDP messages between Alice and Bob proxies and

IDQ3P interfaces and nodes 1 and 5.

VIII. CONCLUSION

The integration of QKD systems in existing networks and
the coexistence with classical channels, although still a matter

of research, has been widely studied. However, their
automation and integration in current infrastructures and novel
network paradigms is still missing, with vendors
manufacturing devices whose integration is not
straightforward. With the aim of achieving quantum devices
that can integrate as a plug-and-play technology into networks,
this work proposes and demonstrates a full architecture for a
use case where quantum devices are used to provide E2E
services. In this paper, we propose for the first time a
collection of node architectural and control plane requirements
for Quantum Enabled service automation in a GMPLS
environment. Furthermore, we implement a set of extensions
to the GMPLS protocol suite to demonstrate how existing
protocols can be used to perform the required handshakes for
security sessions and the key synchronization for quantum
encryption. This work demonstrates a way to integrate this
new type of service in SDN networks, such that operators can
easily deploy and commercialize it. We have chosen GMPLS
as it is a set of protocols widely deployed. Other protocols,
like OpenFlow and NETCONF will be the subject of future
research.

REFERENCES
[1] T. Szyrkowiec, M. Santuari, M. Chamania, D. Siracusa, A. Autenrieth

and V. López, “First Demonstration of an Automatic Multilayer Intent-
Based Encryption Assignment by an Open Source Orchestrator,” Post-
Deadline Paper in European Conference on Optical Communication
(ECOC), 2016.

[2] N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum
cryptography,” Rev. Mod. Phys., vol. 74 pp 145, 2002.

[3] D. Lancho, J. Martinez, D. Elkouss, M. Soto, and V. Martin, “QKD in
Standard Optical Telecommunications Networks,” in QuantumComm
2009, International Conference on Quantum Communication and
Quantum Networking, LNICS, vol. 36, pp. 142-149, 2009.

[4] T. Jimenez, V. López, F. Jimenez, O. Gonzalez and J. P. Fernandez,
“Techno-economic analysis of transmission technologies in low
aggregation rings of metropolitan networks,” in Proc. Optical Fiber
Conference (OFC), 2017.

[5] M. Peev et al., “The SECOQC quantum key distribution network in
Vienna,” New J. Phys., vol. 11, pp 075001, 2009.

[6] M. Sasaki et al., “Field test of quantum key distribution in the Tokyo
QKD Network,” Opt. Express, vol. 19, pp 10387-10409, 2011.

[7] ETSI GS QKD 004 V1.1.1, "Quantum Key Distribution (QKD);
Application Interface", 2010-12.

[8] A. Farrel, J.-P. Vasseur, and J. Ash, “A Path Computation Element
(PCE)-Based Architecture,” RFC4655, 2006.

[9] M. Cuaresma, F. Muñoz, S. Martinez, A. Mayoral, O. Gonzalez de Dios,
V. López, and J. P. Fernández-Palacios, “Experimental demonstration of
H-PCE with BGP-LS in elastic optical networks,” in European Conf. on
Optical Communication (ECOC), London, UK, 2013, paper We.4.E.3.

[10] D. King, and A. Farrel, “A PCE-based architecture for application-based
network operations,” IRFC 7491, 2015.

[11] A. Aguado et al., “ABNO: A feasible SDN approach for multivendor IP
and optical networks,” IEEE/OSA Journal of Optical Communications
and Networking, vol. 7, Issue. 2, pp. A356-A362, 2015.

[12] A. Lindem, N. Shen, J. P. Vasseur, R. Aggarwal, and S. Shaffer,
“Extensions to OSPF for Advertising Optional Router Capabilities”,
RFC7770, 2016.

[13] O. Maurhart, “QKD Networks Based on Q3P,” Lect. Notes Phys., vol.
797, pp. 151-171, 2010.

[14] [Online]. Github Dockernet-tool. Available:
https://github.com/alexaguado/DockerNet (Accessed January 31, 2017).

[15] [Online]. Docker. Available: https://www.docker.com/ (Accessed
January 31, 2017).

[16] [Online]. Java Library of Networking Protocols: PCEP, RSVP-TE,
OSPF, BGP-LS. Available: https://github.com/telefonicaid/netphony-
network-protocols (Accessed January 31, 2017).

[17] G. Van Assche: "Quantum Cryptography and Secret-Key Distillation."
Cambridge University Press (2006)

