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Abstract— Quantum key distribution (QKD) is a novel 
technology that can be seen as a synchronized source of 
symmetric keys in two separated domains that is immune to any 
algorithmic cryptanalysis. This technology makes impossible to 
copy the quantum states exchanged between two endpoints. 
Therefore, if implemented properly, QKD generates keys of the 
highest security based on the fundamental laws of quantum 
physics. No algorithmic advance would force a change of 
technology, as opposed to current public key cryptographic 
protocols, that rely on the complexity of certain mathematical 
problems. These protocols are at risk due to the advances in 
quantum computing and should be changed. On the other hand, 
network services are increasingly requesting more flexibility and 
network resources. One of the most desired capabilities is having 
higher level of security for the transmission between remote 
premises. In this work, we propose a node architecture to provide 
QKD-enhanced security in end-to-end (E2E) services and analyze 
the control plane requirements in order to provide such services 
in transport networks. This work defines and demonstrates for 
the first time extensions for generalized multi-protocol label 
switching (GMPLS) networks. Results show how these new 
services could be integrated in existing operators’ control plane 
architectures. 

Keywords— Network Management, Quantum Key Distribution, 
Software Defined Networking, Generalized Multi-Protocol Label 
Switching, Path Computation Element. 

I.  INTRODUCTION 
NETWORK services are nowadays evolving on a daily basis. 
They are moving from a traditional static approach, to a more 
flexible and dynamic one. Traditional services usually require 
several days (or even weeks) to be established, while new 
applications and services change their requirements much 
faster. This evolution, aiming to cope with this dynamicity, is 
possible thanks to a software-based process. This novel 
network paradigm, called software defined networking (SDN), 
permits decoupling the control plane (traditionally running in 
the core of a network device) from the data plane, managing 
network services from centralized entities (network 
controllers). 

Security is an increasing concern in communications 
networks, as critical information travels across an entire 
infrastructure. However, network security has not been the 
result of a systematic effort but more as a series of ad-hoc 
solutions. During some time, even arguments that have been 

demonstrated to be false —like the intrinsic security of optical 
fibers— were used as a reason to delay or rule out the 
implementation of security mechanisms. Today, networks are 
more complex and, especially with SDN, much more 
configurable. The security risks are correspondingly larger, 
therefore, security in network infrastructures must be 
enhanced. 

QKD technology can be regarded as two sources of 
synchronized random numbers that are separated in space, 
with the added property that there is a security demonstration 
that allows to upper bound the maximum information that is 
leaked out of these two sources. The security of the symmetric 
keys produced by systems built around this technology is, by 
principle, immune to any algorithmic cryptanalysis. QKD can 
be seen as a new opportunity for operators and infrastructure 
providers as it can enable the provision of new, high security 
encryption in end-to-end (E2E) services. This work proposes 
for the first time a new QKD enhanced network device 
providing encryption for E2E services, analyzes its 
requirements from the control plane perspective and shows 
how these nodes can be easily integrated in a GMPLS 
controlled infrastructure. We work under the assumption of 
having an underlying network of connected QKD devices in 
place. Our goal is to develop higher level protocols that allow 
for E2E QKD-key based encryption services. To the best of 
the author's knowledge, the only related work with SDN and 
security for optical networks is [1], where work on the North 
Bound Interface (NBI) exposing security parameters to the 
applications is presented. This work is complementary since it 
allows a GMPLS control plane below the network controller, 
used to synchronize the QKD-generated keys. 

The paper is organized as follows: A brief introduction to 
QKD is presented in Section II, the basic structure of a 
“quantum encryption” node and its integration in a QKD 
network are discussed in Section III. Section IV describes the 
control plane architecture and network protocols considered for 
this work. In Section V the workflow in an E2E GMPLS 
architecture is presented. Section VI elaborates about the 
emulation platform and the implementation of the tests. 
Finally, in Section VII, results of our emulation are presented 
and conclusions are summarized in Section VIII. 

II. QUANTUM KEY DISTRIBUTION 
Quantum key distribution (QKD) [2] is a means to add an 

unbreakable physical layer to an optical network. Unbreakable 
is used here in the sense that it can be mathematically proven 
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to be secure, i.e. it is, in principle, an information theoretic 
secure (ITS) primitive. Thus, a correct implementation can 
deliver keys of the highest security. However, QKD has some 
limitations that do not affect the conventional cryptosystems, 
whose security is based on algorithmic complexity 
assumptions. 

The same no-cloning property that the laws of physics 
imposes on quantum signals and that confers the ITS security 
to QKD protocols, means that the signals cannot be amplified. 
Hence, any kind of amplifiers or active components that can 
modify the state of these signals must be bypassed, thus 
setting a limit to the maximum distance (or absorptions) that a 
QKD protocol can tolerate.  

When transmitting a signal through a not completely 
transparent medium, it suffers an exponential attenuation. In 
the case of an optical fiber and using the most transparent 
window (1550 nm) this typically means a loss of about 0.2 
dB/km. If the signal must pass through some other passive 
optical components, these will add additional losses, another 
0.2 dB per connector, 3 dB in a 1:2 splitter, etc. Modern QKD 
devices can tolerate up to approximately 30 dB of losses, 
which means that they are well suited to be used within a 
metropolitan area or with links of up to 150 km. There have 
been demonstrations going well beyond these limits, but this is 
unrealistic either because of extremely low key rates or high 
insecurity,  since from a small amount of signals a high 
security key cannot be extracted. In principle, so-called 
quantum repeaters can be built, but the main component to be 
developed, quantum memory, is still not available. These 
devices will eventually avoid any absorptions/distance related 
problems, but is a technology still years in the future. Given 
the delicate nature of the quantum signals, the most reliable 
way of transmission is to use a dedicated dark fiber as the 
quantum channel. This is not a must, however, and previous 
test-beds [3] have shown how to use a fiber shared by 
quantum and classical channels and the tradeoffs involved. 

Nonetheless, when considering real networks, the distance 
limit has a relative importance as long as it is considered that 
the task here is to connect the different security perimeters 
between the different security domains in the network. 
Operators define a security perimeter and assume that their 
nodes are secured places. Distances between secure nodes [4] 
are typically well within the QKD distance limits. Also, in 
absence of quantum repeaters, this limitation can be 
ameliorated by forwarding the keys using the trusted nodes 
approach [5, 6]. 

Beyond the quantum channel, QKD requires a classical 
channel. It is also assumed public, but it must be authentic. 
The origin and integrity of the data must be preserved. On 
installation, a first token is used to initiate the authentication 
of the classical channel. After this phase, the same keys that 
are created at both ends can be used to insure the continued 
ITS authentication of the channel. Then, the continuous supply 
of symmetric keys that QKD systems provide, can be used to 
create authentication chains for the different services in the 
network. Since they are symmetric keys, fast encryption 
algorithms can also provide very high throughput capabilities 
down to the packet level. 

III. QUANTUM ENCRYPTION NODE 
In a QKD enhanced network context, with E2E encryption 

services, a network device with quantum encryption (QE) 
capabilities should be able to communicate with the networks' 
control plane, beyond a standard interface and through an open 
one, certain additional characteristics. Note that, with QE we 
mean an encryption scheme that uses the QKD generated keys. 
More specifically, these devices should generate (or have 
access to) a pool of keys to perform symmetric encryption, 
expose unique IDs that identify quantum keys or sessions to 
the network controllers and/or applications (northbound 
interface) and perform switching and inline encryption. 

 
Fig 1 Example of a GMPLS-enabled node with QE capabilities. 

Fig. 1 shows an example of how a quantum enabled 
network device could look like. A QE-capable device should 
have access to a source of quantum keys. This can be 
implemented in many ways, as there is still not a standard 
protocol for QKD devices to expose their keys. We have used 
the ETSI GS QKD 004 V1.1.1. API [7] to implement such 
protocol. An optical device will allow the agent to choose 
whether certain traffic should be encrypted or just forwarded to 
the network. It will also allow to easily send the packets to a 
traffic encryption device (e.g. a hardware security module). 
These are commercial products ready in the market, authors in 
[1] uses this kind of equipment. This set of hardware devices 
and interfaces must be orchestrated from a central entity within 
the domain, acting as a controller for the configuration. This 
entity (agent) exposes information of a single node, abstracting 
the multiple devices as one, and allows to be configured by 
centralized systems using standard protocols (e.g. GMPLS, 
OpenFlow, NETCONF). However, bringing quantum 
encryption awareness and the capability of providing inline 
encryption into a logically centralized control plane will 
require to extend these protocols, since this will require new 
information to be transmitted to perform routing and 
capabilities dissemination. 

IV. CONTROL PLANE ARCHITECTURE 
The software defined networking (SDN) paradigm, based 

on network programmability, decouples the network’s data 



plane from the control plane. This allows operators to centrally 
manage and dynamically setup, tear down and optimize 
customer services in their infrastructures, all done via standard 
protocols and interfaces. Different architectures and protocols 
have been created to allow this process of decoupling the 
forwarding decisions from the devices into a centralized 
architecture. The path computation element (PCE) architecture 
was presented in [8]. This architecture gathers a collection of 
algorithms that are computationally difficult and that may 
require special computational components and 
synchronization with other domains to calculate E2E paths 
over multi-layer and multi-domain networks. It can act in 
passive (receiving path requests and providing responses) or 
active mode (communicating with network devices to 
configure the services). It can work as a standalone module, 
cooperate with other PCE (east-west or parent-child mode 
[9]), or be a part of a more complex architecture, such as the 
application-based network operations (ABNO) [10,11]. 

In order to interact with the network devices, the PCE uses 
multiple protocols. GMPLS is a family of protocols that 
extends MPLS to cover time, space and wavelength division 
multiplexing (TDM, SDM and WDM respectively) switching 
technologies. It allows devices to share their traffic 
engineering (TE) information (like reachability, link state, 
router information, etc.) using protocols such as open shortest 
path first protocol with TE extensions (OSPF-TE); signal 
specific configurations across the network via resource 
reservation protocol with TE extensions (RSVP-TE); or 
communicate and receive responses or instructions from the 
PCE via PCE communication protocol (PCEP). In order to 
interact with the network devices, the PCE uses two protocols 
PCEP (for LSP management) and OSPF-TE (for Traffic 
Engineering information). This set of protocols allows the 
PCE to orchestrate an entire network centrally, handling 
network services and optimizing resources. 

 
Fig 2 Workflow of the end-to-end quantum encryption in a GMPLS 

network scenario. 

V. PROPOSED WORKFLOW AND EXTENSIONS 
Calculating and establishing E2E services in a GMPLS-

enabled network usually require several operations within the 
network’s control plane. These operations can be divided into 
three subgroups: information dissemination, path calculation-
configuration and signaling. For this, different components 

communicate among each other via standard protocols, such 
as OSPF-TE, BGP-LS, PCEP, RSVP, etc. Nodes within a 
network expose their capabilities and reachability among 
themselves and externally. A central management entity (in 
our case, a PCE) calculates paths (and configure them if in 
active mode), and the network nodes forward the 
configuration (explicit route object, ERO) from the first to the 
last node in the path. 

Following the same scheme, our new QKD-based encrypted 
services will require a subset of these operations and protocols 
to be extended (or partially redefined). We have adjusted the 
abovementioned subgroups to cover the service workflow (see 
Fig. 2) in a GMPLS-enabled scenario, exposed below as 
quantum encryption capabilities dissemination (no reachability 
information has been extended), path computation and 
signaling (key synchronization). 

A. Quantum Encryption Capabilities Dissemination 
Network nodes connecting to remote control plane entities 

must expose information to be controlled and optimized in the 
best way. This information includes, for example, number of 
ports, switching/routing capabilities, supported bandwidth, 
statistics, traffic engineering capabilities, etc. In this way, the 
control plane central entity (controller/PCE), can build a graph 
of the existing network and compute and optimize network 
services to better use the available resources. Encryption 
services (if centrally managed by a controller/PCE) require at 
least a minimum information to be exposed from the network 
devices that can perform such process. This information 
should be gathered by the PCE, stored on its TE database 
(TED), and then used when these services are computed. 

The proposed extension to disseminate QE capabilities is 
based on the RFC7770 [12], which defines OSPF extensions 
for optional router capabilities. This extension, implemented 
for OSPFv2, uses the router information (RI) opaque link state 
advertisement (LSA) within an OSPF update message. The 
opaque LSA contains a 4-bytes-long informational capabilities 
TLV to expose, for example, whether a router is graceful 
restart capable/helper, has TE support, stub router support, etc. 
Following the same order than the RFC, we choose the first 
unused bit (number 6) to expose whether a router is quantum 
encryption (QE) capable or not. The PCE, under reception of 
this bit, stores the capability on its TED. 

B. Path Computation 
The main purpose of the PCEP is to communicate a PCE 

with a path computation client (PCC) or multiple PCEs. It is 
composed by multiple messages defined to request path 
calculation and its reply (PCRequest, PCReply) and path 
instantiation in active mode (PCInitiate, PCReport), among 
others to open, close and keep the PCEP session. In addition, 
the initiation of the service deployment process in the network 
differs depending on the mode of the PCE (active/passive, 
stateful/stateless): 
• A passive PCE receives PCRequests to calculate a path, 

mainly from the PCC within a network device, and 
responds PCReply messages including the ERO, which is 
handled by the device. 



• An active PCE can receive both PCRequest or PCInitiate 
messages to calculate and/or instantiate the connectivity. 
It can directly communicate with the network devices via 
PCInitiate message to configure the path. 

Both procedures are suitable for our use case. Therefore, 
since most of the extensions directly affect the PCRequest 
message and the ERO inside a PCEP message, we have 
chosen the first one (passive PCE, with a source node asking 
for a E2E QE service) to expose our work in a clearer way. 

When a QE E2E service is required, a set of parameters 
must be transmitted to the PCE in order to identify the service 
and to perform the required computation. The set of 
parameters we have utilized to identify the service includes: 
• Session ID: ID to synchronize the keys in both ends of the 

service. Its length is 64 bytes, following the standard 
defined in [7] (key_handle). 

• Destination: identifier of the destination endpoint of the 
QE service. In our implementation, an IP(v4) address. 

• Key length: Length of the key to be used to encrypt the 
communication. 

• Encryption layer: Layer to be encrypted between the 
nodes (IP, Ethernet, Optical). 

• Refresh type and value: type (e.g. time, amount of 
information) and value to update keys used in a service. 

• Algorithm: The encryption algorithm used for the 
communication. 

 
Fig 3 The proposed QE ERO subobject structure. 

Handshaking these parameters between PCE and PCCs 
must happen in two phases: 
• The PCC sends the PCRequest with certain parameters to 

consider in the path computation. These parameters are: 
key length, destination, encryption layer, refresh type and 
value and algorithm. This information is sent adding new 
metrics in the metric list of the PCRequest. 

• The PCE should respond with a path inside the PCReply. 
This path contains new subobjects placed in the ERO just 
after the subobjects identifying the nodes that have to 
perform the encryption. They contain a session ID 
(initialized as zero), key length, encryption layer, refresh 
type and value and algorithm, as shown in Fig. 3. 

Upon response, the source node analyzes the PCReply and 
starts the signaling process (and the key synchronization, in 
case of being source node of the QE service). 

C. Signaling and Key Synchronization 
When a PCReply or a PCInitiate message arrives to a PCC 

of a network node, this node is in charge to start the signaling 
process by extracting the ERO from the PCEP message and 

transmitting it via an RSVP Path message. Other intermediate 
nodes forward these messages down to the destination node, 
getting the required configuration parameters from the 
message. When this message arrives to the destination node, 
assuming that no error has occurred, it responds back with a 
RSVP Resv message, informing that all the necessary 
resources have been reserved. 

When performing quantum encryption, considering any 
layer up to the application layer, one mandatory step is to 
synchronize the keys in both sides. This process can be easily 
done by exchanging IDs to identify the session, or the key in 
both extremes through an open channel. RSVP is the best 
candidate to automate the key synchronization process. It is 
capable of forwarding the encryption requirements across the 
path and return a confirmation (Resv message) if the resources 
(keys) have been reserved, while the signaling process 
traverses the network. This mechanism is defined as follows: 
• The QE-capable source node finds itself inside the ERO, 

and detects the new QE ERO subobject as well. 
• This node decodes the session ID, sees that it is set to zero 

(64 bytes) and extracts a new key and session ID 
(key_handle) from the key server using an interface based 
on ETSI GS QKD 004 v1.1.1 specification [7]. 

• The source node stores the key and injects the session ID 
inside the QE ERO subobject of the destination node. 

• The destination node receives the RSVP Path message, 
finds itself inside the ERO and detects the QE ERO 
subobject. 

• As the session ID is not zero, the destination node extracts 
the key using the session ID through the same interface as 
above [7]. 

Both nodes extract the other parameters (encryption layer, 
key, length, refresh type and value and algorithm) from the QE 
ERO subobject as well, to be used afterwards by the device in 
charge of the encryption. The QE service will finish its 
deployment process when the source node receives the RSVP 
Resv message. In this moment the keys would be available for 
any upstream service, like AES or 3DES encryptors. 

 

 
Fig 4 Logical representation of the set of nodes and messages used to 

extract and synchronize keys. 

VI. SCENARIO, IMPLEMENTATION AND EMULATION 
PLATFORM 

The emulated control plane scenario for this demonstration 
is equivalent to the one shown in Fig. 2. It comprises five 



GMPLS-enabled nodes (logically connected as shown in Fig. 
2) and a PCE. We run an additional client that connects via 
telnet to the first device to start the workflow. In addition to 
this, nodes 1 and 5 are connected to “Alice and Bob” QKD 
domains, providing keys in two different layers. We emulate 
the ID Quantique Clavis2 3100 system by having a set of 
predefined keys in two different nodes that provide IDQ3P 
interfaces, which is the ID Quantique proprietary interface of 
the Q3P protocol [13]. 

These two nodes communicate with two proxies that 
provide, as a northbound interface, a protocol based on the 
API defined in [7]. They synchronize the sessions maintained 
between themselves and provide the session IDs (key_handle) 
that are kept to extract keys until the service is finished. 
Keeping the same session ID to extract keys in both sides is 
convenient, as IDs can be mapped one to one to services. This 
can be used to update keys dynamically in both extremes when 
a service requires to do so. Fig. 4 shows the logical 
connectivity between nodes 1, 5, and Alice and Bob domains. 

 
Fig 5 Capture of the Dockernet GUI, showing the set of GMPLS 

nodes (tn1-5), PCE, client (ubuntu1), proxies (etsiA-B), ID 
Quantique devices and OVSs (dark nodes). 

To perform this test, we have implemented a platform [14] 
that allows the creation of virtual networks using Docker [15] 
for the deployment of containers and Open vSwitches to 
provide the required connectivity. Six IP domains are created 
to have the traffic isolated (GMPLS control plain domain, two 
domains to connect the nodes 1 and 5 to the proxies, two 
domains to connect the proxies to the IDQ3P interfaces and an 
additional one for the synchronization channel). Our control 
plane topology is the one shown in Fig. 5, where the dark 
nodes are OVS and the rest of them are containers running 
either java or python processes. 

 
Fig 6 Set of messages exchanged among nodes, and with the PCE. 

The GMPLS agents and the PCE have been implemented in 

Java, using Netphony [16] open source project. The IDQ3P 
interface and the proxies have been implemented in Python. 

 
Fig 7 Opaque RI LSA and Informational Capabilities TLV. 

VII. EXPERIMENT AND RESULTS 
The full set of required messages transmitted across the 

GMPLS control plane is shown in Fig. 6. The first message is 
an OSPF update from the fifth node (others are omitted), 
which contains the router information opaque LSA, with the 
traffic engineering capable and que QE capable bits set to 1 
within the informational capabilities TLV (Fig. 7). The second 
and third messages are the PCRequest and PCReply messages. 

 
Fig 8 Metrics sent inside the PCRequest message for the QE service. 

Fig. 8 shows the 4 metrics that define the service, included 
as follows: (1) Encryption algorithm, Type: 253, Value: 10, 
(2) Refresh Type: 252, Value: 1000, (3) Key length Type: 255, 
Value: 32, (4) Layer of encryption Type: 254, Value: 2. 

 

 
Fig 9 Explicit route object including the new QE ERO subobject. 

Upon request, the PCE decodes the multiple metrics and 
injects them in the QE ERO subobjects, together with an unset 
session ID. Fig. 9 shows the ERO, which includes the new 



defined ERO subobjects. Both (source and destination of the 
QE service) are placed just after the subobjects that identify 
the nodes with QE capabilities. 

 
Fig 10 QE ERO subobject change to signal the session ID. 

The last set of messages are RSVP Path messages (node 1 
to 5) and RSVP Resv messages (on the opposite direction). 
These messages contain the same ERO as the one that comes 
inside the PCReply (Fig. 9). This ERO is maintained until the 
last node of the path, except for the changes introduced by the 
source node of the QE service. This node, by finding out the 
requirement of establishing QE, extract a new key and a new 
session ID (if previously set as zero), and modifies the QE 
ERO subobject of the destination node, adding the new 
session ID which is mandatory to synchronize the key in both 
points. The process of signaling the session ID can be 
observed in Fig. 10 where the first image shows the QE ERO 
subobject received by the source node inside the PCReply 
(third message) and the second shows the same object when 
transmitted from node 1 to 5 inside the RSVP Path message. 
The entire workflow from the PCRequest until the last RSVP 
Resv message takes around 300 ms, bearing in mind that the 
emulation was run in a single computer, with no other 
processes running to increase the latency. Other messages 
have been omitted to improve readability. 

Finally, Fig. 11 shows a list of UDP messages within the 
Alice and Bob domains which are used for key extraction, 
synchronization between proxies and the IDQ3P messages. 
The secret key throughput of state of the art QKD devices at 
typical metropolitan distances is in the range of Mbps. Using 
the acknowledged 2^40 of data per key limit for DES [17], 
these secret key rates would allow to encrypt multi Tbps links 
with a much higher security level than what is standard today. 

 
Fig 11 Set of UDP messages between Alice and Bob proxies and 

IDQ3P interfaces and nodes 1 and 5. 

VIII. CONCLUSION 

The integration of QKD systems in existing networks and 
the coexistence with classical channels, although still a matter 

of research, has been widely studied. However, their 
automation and integration in current infrastructures and novel 
network paradigms is still missing, with vendors 
manufacturing devices whose integration is not 
straightforward. With the aim of achieving quantum devices 
that can integrate as a plug-and-play technology into networks, 
this work proposes and demonstrates a full architecture for a 
use case where quantum devices are used to provide E2E 
services. In this paper, we propose for the first time a 
collection of node architectural and control plane requirements 
for Quantum Enabled service automation in a GMPLS 
environment. Furthermore, we implement a set of extensions 
to the GMPLS protocol suite to demonstrate how existing 
protocols can be used to perform the required handshakes for 
security sessions and the key synchronization for quantum 
encryption. This work demonstrates a way to integrate this 
new type of service in SDN networks, such that operators can 
easily deploy and commercialize it. We have chosen GMPLS 
as it is a set of protocols widely deployed. Other protocols, 
like  OpenFlow and NETCONF will be the subject of future 
research. 
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