

Abstract—Optical burst switching is a promising alternative

for next generation optical networks. On the other hand, TCP is
expected to continue as the prevailing transport protocol.
Therefore, TCP over OBS needs to be studied in depth. Previous
work on this topic has usually considered the transmission of a
single TCP flow through the OBS network. However, a more
pragmatic scenario is that where the burstifier is fed by multiple
data flows. In this paper we study, by means of simulation, the
performance of TCP Reno and SACK over OBS networks in that
scenario. We compare the results with those obtained for the
single flow situation, in terms of the number of segments carried
per burst and goodput, showing significant differences in
behavior and performance.

Index Terms—TCP, OBS, multiple traffic sources

I. INTRODUCTION
HE spectacular growth of Internet traffic has fostered
research in optical networking, due to the huge amount of

bandwidth offered by the optical fiber. A number of switching
paradigms have been proposed with the aim of designing these
networks. Wavelength-routed optical networks are based on
optical circuit switching [1]. It is a relatively mature
technology, but usually leads to inefficient use of bandwidth.
An alternative to improve bandwidth utilization as well as to
enhance adaptability to traffic conditions are optical packet-
switched networks. However, optical packet switching is still
in its early stages and lacks of maturity [2]. An intermediate
and promising option is Optical Burst Switching (OBS) [3].
OBS combines advantages from both optical circuit and packet
switching, managing bandwidth efficiently, and being a
feasible technology in the medium term. For these reasons
there is a significant interest in this technology, which has led

This work has been carried within the “TCP over OBS” taskforce of the

European project NOBEL and the JP on OBS of the Network of Excellence
e-Photon/One+, and has been also supported in part by the Spanish Ministry
of Education and Science (Ministerio de Educación y Ciencia) under Grant
TEC2005-04923.

O. González de Dios is with Telefónica I+D, Emilio Vargas 6, Madrid,
(e-mail: ogondio@ tid.es).

I. de Miguel is with the Department of Signal Theory, Communications
and Telematics Engineering, University of Valladolid, Campus Miguel
Delibes, Camino del Cementerio s/n, Valladolid, 47011, Spain. (e-mail:
ignacio.miguel@tel.uva.es).

V. López was with Telefónica I+D when this work was done. He is now
with the Networking Research Group (NRG) of Universidad Autónoma de
Madrid (e-mail: victor.lopez@uam.es).

to the proposal of architectural variations, to studies about
performance, and even to the implementation of OBS testbeds.

In OBS networks, packets ⎯usually IP datagrams⎯, arrive
at the edge nodes, where they are classified in electronic
buffers according to their destination and class of service, and
are grouped into bursts (Figure 1). These bursts are transmitted
through the core optical network towards the destination edge
node, where the burst is disassembled into IP packets. Prior to
the transmission of a burst, a burst control packet (BCP) is
sent. The BCP usually contains information about the
destination edge node, the length of the burst, the offset time
between the BCP and the burst, and the channel (typically a
wavelength) in which the burst will be sent. Since intermediate
nodes receive the BCP some time before the arrival of the
burst, they have enough time to determine the next hop for the
control packet (and for the burst), to select the wavelength to
use, and to configure the switching matrix of the node, so that
all resources are ready exactly when the burst arrives.

One of the key issues in OBS is the method employed to
aggregate the packets into bursts. This process is usually
known as burstification. There are several assembly algorithms
[3-6]. One method commonly used, and the one that we will
use in this study, is the timeout-based assembly method. When
a packet arrives at a buffer (and if a burst formation process
has not started yet), a new burst begins to be assembled, and a
timer is activated. The following packets arriving at the buffer
are added to the burst until the timer expires. Other algorithms
are based on burst size. These methods aggregate packets until
the size of the burst reaches a size threshold. There are also
hybrid approaches, which combine the utilization of a timer
and a size threshold, and adaptive algorithms, which
dynamically modify the timer and/or the size threshold
according to traffic conditions [6].

Core nodes

Edge
node Edge

node

Figure 1: OBS Network architecture.

 Performance evaluation of TCP over OBS
considering background traffic

Óscar González de Dios, Ignacio de Miguel, Víctor López

T

One of the issues that have recently received significant
attention is the evaluation of the network performance when
the characteristics of the upper layers of the protocol tower are
considered. TCP [7] is the de facto standard in transport
protocols, and is used by most of user applications, such as
web browsing, e-mail or FTP. Moreover, it is expected that
TCP will still hold the leadership in the medium and long term.
Hence, is necessary to analyze the performance of TCP over
OBS networks, because this combination can be a feasible
alternative for the next generation high speed optical Internet.
Detti et al. first studied the performance of TCP Reno over
OBS from an analytical point of view [8]. They assumed a
simple network model consisting of only one TCP client and
one server connected by a lossy OBS link with a lossless
return link. Later, they improved the model by considering a
lossy return link [9]. They proved the existence of an effect,
which they named correlation benefit, which is due to the
aggregation process, and that can lead, in some cases, to a
significant increase of the TCP transmission rate. In order to
check the existence of the correlation benefit in pragmatic
scenarios, they also studied a sample scenario with additional
traffic sources. While such simulation shows the correlation
benefit, quantitative results in that scenario deviate from the
analytical model (since that model was obtained for the simple
one client-one server scenario). Hence, it becomes clear the
necessity of performing both a theoretical and a much more
extensive simulation analysis to evaluate the impact of
multiple traffic sources on TCP over OBS networks. Yu et al.
[10-12], compared the impact on performance of different
versions of TCP, namely Reno, SACK and New Reno, both
analytically and by means of simulation, showing that SACK is
the version that usually leads to higher throughput. However,
they only considered the simple scenario with only one TCP
client and server. Gowda et al. [13] presented a number of
simulation studies about the impact on throughput and delay of
the maximum burst size and timeout when feeding the OBS
network with three and 30 TCP sessions, but they provided
just a few qualitative explanations of the results. Pleich et al.
[14] presented some simulation results of TCP Reno over OBS
considering up to 900 TCP sources, finding than realistic TCP-
controlled traffic on top of OBS is much more robust to burst
losses than predicted by other papers. They considered that
“probably the claimed sensibility of throughput to burst losses
depends on old (simulated) TCP versions or on too few traffic
sources”. On the other hand, Gonzalez et al. [15] provided a
qualitative explanation, supported by simulation results,
showing that the throughput in OBS networks degrades when
the delayed ACK feature of TCP is employed. Finally, Guo et
al. [16] reported some experiments done with TCP over an
OBS testbed.

In this paper, we perform an extensive simulation study of
the performance of TCP over OBS networks when multiple
traffic sources feed a burstifier. Not only quantitative results
are presented, but also qualitative explanations of the impact
of different scenarios and parameters such as the utilization of

different versions of TCP (Reno and SACK), the utilization or
not of the delayed ACK algorithm, the impact of the
burstification timer, and of course, the comparison of scenarios
with a single traffic flow and with additional background
traffic.

First, in section II, we review the basic characteristics of
TCP, which are required to understand its behavior. Then, in
Section III, we explain the most important problems that TCP
has in an OBS network, mainly delay and burst losses,
supporting our explanations with simulation results. Finally, in
Section IV, we analyze the distribution of the TCP segments of
a flow when carried by optical bursts, and evaluate the
performance of TCP over OBS networks in the scenarios
mentioned above.

II. INTRODUCTION TO TCP
TCP has become the de facto standard in transport protocols

and it is used by most of user applications [7]. This protocol is
in charge of controlling end-to-end communications, using the
facilities provided by the network layer, which is usually IP. In
this section, we briefly describe the basic behavior of TCP;
since, as we will show later, some of the characteristics of TCP
explained here have a significant impact on the performance of
OBS networks.

A. TCP transmission, flow and congestion control
TCP sends data in chunks, called segments, which are

acknowledged by the receiver. Each segment is numbered with
the aim of facilitating both reordering in the destination node
and detecting lost segments. TCP uses a sliding window
mechanism for flow control. Hence, only a certain number of
segments are allowed to be sent. When these segments are
acknowledged, TCP is allowed to send more data. The
transmission window determines the maximum number of
segments that can be in transit, that is, how many segments can
have been sent but have not been acknowledged yet. Each time
an acknowledgement is received, the window is updated, and
TCP is allowed to send new segments.

Another important concept in TCP is the round trip time
(RTT), which is defined as the time between the sending of a
segment and the arrival of its acknowledgement (ACK). The
most common situation is that all the segments of the window
are transmitted within a RTT. Thus, an estimate of the TCP
transmission rate, X(t), in segments per second, is

RTT
tWtX)()(= , (1)

where W(t) is the size (in segments) of the transmission
window at a certain time. Therefore, the maximum TCP
throughput is [17]

RTT
WX max

max = , (2)

where Wmax is the maximum size of the transmission window.

The transmission window size is determined by the
minimum of two limits, one imposed by the receiver, the
reception buffer or receiver advertised window, which
indicates the amount of data that it is able to buffer, and
another imposed by the sender, the congestion window, which
is a limit on the segments in transit in order not to overload the
network. TCP has several phases in the transmission, where
the congestion window varies in a different way. Initially, TCP
has a low congestion window, typically one segment, and its
size is increased by one segment every time an
acknowledgement (ACK) is received. This phase is called slow
start, and results in an exponential increase of the congestion
window, as shown in Fig. 2.a. This behavior ends when the
congestion window reaches a certain threshold, ssthresh (slow
start threshold). The next phase is congestion avoidance,
where the congestion window is increased at a slower rate, at
most one segment per round trip time, hence linearly
increasing with time (Fig. 2.a). The purpose of increasing the
congestion window at a slower rate is not to overflow the
network. Fig. 2.b shows the evolution of the transmission
window, which is the minimum of the congestion window and
the receiver advertised window (or reception buffer).

time

time

T
ra

ns
m

is
si

on
 w

in
do

w

C
on

ge
st

io
n

w
in

do
w

Slow
start
phase

Slow
start
phase

Congestion
avoidance
phase

Congestion
avoidance
phase

(a)

(b)

Reception buffer

Reception buffer

Figure 2: (a) Evolution of the congestion window for a TCP flow.
(b) Evolution of the transmission window for a TCP flow.

B. Reliability of the transmission
TCP has a number of mechanisms to detect and recover

from segment losses, thereby providing transmission
reliability. TCP was created with the idea that the loss of a
segment is a clear indication of congestion (something which
is not usually true in an optical network). Thus, when a
segment loss is detected, the aim of the recovery mechanisms
is not only to retransmit the lost segment, but also to slow
down the transmission rate (by means of reducing the
congestion window) in order to avoid further network
congestion.

TCP has two ways of detecting losses, by the triggering of a
retransmission timeout and by means of the reception of three
duplicate ACKs. As we previously said, all segments must be
acknowledged. When a segment is sent, a timer called

retransmission timer is set. If the timer expires before the
arrival of the ACK, it is assumed that the segment was lost.
Thus, when this timer expires, the lost segment is
retransmitted, and the transmission goes to the beginning of
the slow start phase. Thus, the TCP transmission rate is
drastically reduced. The second method to detect losses is the
reception of duplicate ACKs. When a destination TCP node
receives a segment whose sequence number is not the expected
one, but a higher one, so that one segment may have been lost,
it must send a duplicated ACK immediately, confirming again
the segments already acknowledged. When three duplicated
ACKs (four identical ACKs) are received by the TCP source,
the segment is retransmitted without waiting for the timer
expiration. This mechanism is called fast retransmit [18].
Sometimes, depending on the TCP version employed, this
mechanism is combined with fast recovery [18]. When fast
recovery is used, the TCP sender reduces the congestion
window to roughly half of the size of the transmission window
(additional details can be found in [18]). In this way, the
reduction of the transmission rate is not as drastic as in the
case of the timer expiration. Fast retransmit and fast recovery
are efficient methods when only one segment is lost, but they
are not so efficient when several consecutive segments are lost.
This fact will be shown and explained in Section III, where we
analyze its impact in OBS networks.

With the aim of improving the performance in the case of
multiple segment losses, a technique called selective
acknowledgement (SACK) has been proposed [19, 20]. The
selective acknowledgment is an ACK which includes an
additional field where, if the segments arrive out of order, the
receiver tells which segments have arrived out of order and
how many consecutive segments have been received. In this
way, the sender is able to know how many segments have been
lost and how many have arrived correctly. Hence, the sender
can retransmit all the lost segments without waiting for the
timer expiration.

There are a number of TCP versions such as Tahoe, Reno,
New Reno, SACK, and Vegas. The main differences among
them are the algorithms that they employ when congestion is
detected. In this paper we focus on the most important TCP
versions nowadays: TCP Reno, which implements fast
retransmit and fast recovery, and TCP SACK, which also uses
those algorithms together with selective acknowledgement.

C. Delayed ACK
The first version of the TCP protocol [21], states that a TCP

receiver must send an acknowledgement for each incoming
segment. This behavior was later modified by RFC 1122 [22],
which specifies the delayed ACK algorithm. In the event of an
incoming segment, the TCP receiver does not immediately
send an acknowledgement. Specifically, the ACK is delayed
until a second segment arrives or a timer expires. Delayed
ACK was introduced to reduce the load in the network.
However, this improvement is only significant in asymmetric
networks. Moreover, a TCP sender increases its congestion

window according to the number of ACKs received, not to the
bytes acknowledged. Hence, when delayed ACK is not used,
the congestion window increases faster, leading to higher TCP
transmission rates [23].

III. IMPACT OF THE BURSTIFICATION IN TCP
Since in an OBS network, packets are aggregated into bursts

before being transmitted, the performance of TCP differs from
that in ordinary packet networks. First of all, packets suffer an
additional delay in the transmitter due to the burstification
process. Secondly, when a burst is lost, several segments
belonging to the same TCP connection may be lost. Hence,
OBS networks are more prone to suffer the lost of consecutive
segments than packet networks.

A. Impact of delay penalty
IP datagrams, which contain TCP segments, are grouped

into bursts in the ingress nodes of the OBS network. The
assembly of the datagrams into bursts introduces an additional
delay, due to the waiting time until the burst is completed.
Hence, the RTT is increased, and therefore the TCP
throughput (see equation 1) is reduced. While being
assembled, a TCP segment has to wait between 0 and Tb until
the burst is completed (being Tb the burst aggregation time).
As the segment containing data waits at maximum Tb, and its
ACK also waits at maximum Tb before being sent back, in the
worst case, the RTT will be increased by 2Tb [11].

B. Impact of burst losses
The most influential aspect on TCP performance is the loss

of bursts due to contention at intermediate nodes. The loss of a
burst generally implies the loss of several consecutive TCP
segments belonging to the same flow. As mentioned in Section
II, TCP has two ways to detect segment losses; either by
means of the reception of duplicated ACKs, or by means of the
expiration of a retransmission timeout. In OBS, bursts contain
several segments; hence, if a burst is lost, depending on the
number of segments it contains (when compared to the size of
the transmission window), TCP will have a different reaction.
If a burst which contains a complete transmission window is
lost, the retransmission timer will expire and the transmission
will switch to the slow start phase. On the other hand, if the
lost burst does not contain a complete window, out of order
segments will arrive at the receiver, so duplicated ACKs will
be sent, and the mechanisms of fast retransmit and fast
recovery will enter into action.

It is important to remark that in a pragmatic OBS network, a
burst will carry TCP segments associated to different TCP
connections or flows. This is due to the fact that different
sources will be feeding the burstifiers of the edge nodes.
Therefore, in case of the loss of a burst, the influence on the
performance of TCP depends on the total number of segments
belonging to the same flow that are carried by that burst. In
order to analyze the impact of this issue from a qualitative
point of view, we have performed a number of simulation
experiments in OPNET Modeler for TCP Reno and SACK.

The main results can be summarized in three scenarios1.

1) Loss of a burst carrying only one segment of a TCP
flow

Let us assume that a burst is transmitted from an edge node
A to another B. The burst only carries one segment from a
TCP flow, and unfortunately, the burst is lost.

Fig. 3 shows the evolution of the congestion window for
TCP Reno for this scenario. Fig. 3.a shows the complete
transmission, while Fig. 3.b shows a zoom around the instant
when the burst loss takes place. In those figures, we have
numbered a few noteworthy points of the simulation. At point

, the loss of the burst occurs. That burst only contains one
segment of the TCP flow that we are analyzing. If the
transmission window was big enough, additional segments will
have been sent in other bursts after that lost one. Hence, if at
least three segments reach the destination node after the loss,
the TCP sink (at node B) will detect that they are out of order,
so it will send three duplicated ACKs (one for each out of
order segment). When the third duplicated ACK reaches node
A, the TCP source will trigger the fast retransmit and fast
recovery mechanisms. First of all, the congestion window is
reduced to fligthsize/2 + 3 (point). Flightsize is the number
of segments that have been sent but have not been
acknowledged yet, that is, the number of segments in transit,
and its value usually matches with that of the transmission
window. Then, the segment of the flow which was lost (due to
the loss of the burst) is retransmitted, and the congestion
window is increased every time a new duplicated ACK arrives
(points). Finally, when the ACK that acknowledges the
retransmitted segment arrives, the congestion window is
reduced to the half of flightsize (point).

In this scenario, the duplicated ACKs arrive at the TCP
source before the expiration of the retransmission timer. Thus,
the reduction of the transmission rate is not as significant as if
the timer had expired.

The behavior of TCP SACK is shown in Fig. 4. After the
burst loss (point), when the three duplicated ACKs arrive,
the congestion window is reduced to the half of flightsize
(point), and the lost segment is retransmitted. Then, new
duplicated ACKs arrive (points). One RTT after
retransmitting the segment, its ACK arrives confirming the
reception at destination, and then the size of the congestion
window keeps growing according to the congestion avoidance
phase (point).

Therefore, both TCP Reno and SACK recover from the
segment loss in a short time, one RTT after receiving the three
duplicated ACKs. After the recovery, the congestion window
is reduced to the half of flightsize. Hence, in this scenario, the
behavior of both versions is very similar.

1 There are additional scenarios (or subscenarios) to those described here,

but these are the most relevant ones.

0 2 4 6 8 10
0

10

20

30

40

50

60

70

80

90

100

110

co
ng

es
tio

n
w

in
do

w
 (

kb
yt

es
)

time (s)

 congestion window
 Max transmission window

2

1 3

4

(a)

7,25 7,30 7,35 7,40 7,45
0

10

20

30

40

50

60

70

80

90

100

C
on

ge
st

io
n

w
in

do
w

 (
kb

yt
es

)

time (s)

 congestion window
 Max transmission window

2

3

4

(b)

Figure 3: Evolution of the congestion window for TCP Reno when a burst
containing one segment of the flow is lost. (a) Complete transmission. (b)
Zoom around the burst loss.

0 1 2 3
0

10

20

30

40

50

60

70

80

C
on

ge
st

io
n

w
in

do
w

 (
kb

yt
es

)

time (seconds)

 congestion window
 max transmission window

2

1

3 4

Figure 4: Evolution of the congestion window for TCP SACK when a burst
containing one segment of the flow is lost.

2) Loss of a burst carrying two or more segments of a
TCP flow

Now, we study the case where a burst carrying two segments
of a TCP flow is lost, and the following burst (with new
segments) arrives correctly. Figs. 5 and 6 show the behavior of
TCP Reno and TCP SACK, respectively.

0 2 4 6 8 10 12 14 16
0

10

20

30

40

50

60

70

80

90

100

110

C
on

ge
st

io
n

w
in

do
w

 (
kb

yt
es

)

time (s)

 congestion window (Reno)
 Max transmission window

2

1

4

3

5

Figure 5: Evolution of the congestion window for TCP Reno when a burst
containing two segments of a flow is lost.

2

1

3
4

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
0

10

20

30

40

50

60

70

80

90

100

110

C
on

ge
st

io
n

w
in

do
w

 (
kb

yt
es

)

time (s)

 congestion window (SACK)
 Max transmission window

Figure 6: Evolution of the congestion window for TCP SACK when a burst
containing two segments of a flow is lost.

In the case of TCP Reno (Fig. 5), after a burst loss detection

by means of duplicated ACKs (point), the sender
retransmits the first segment lost and reduces the congestion
window to fligthsize/2 + 3 segments (point). Then, as new
duplicated ACKs arrive, the congestion window is increased
by one segment (points). In the example shown in the
figure, the sender has in transit as many segments as the
receiver advertised window. Hence, no matter the value of the
congestion window, the TCP sender cannot send any new data.
If the receiver advertised window had been higher than the
congestion window when fast recovery started, the sender
could have been allowed to send new segments in some of
these window updates (but this is not the case considered in
the example). Then, the ACK of the first lost segment (which
was generated after the reception of the retransmitted segment)
arrives, and the congestion window is reduced (point). At
this point, in the example, the number of segments in transit is
reduced just by one (thanks to the segment that has arrived
correctly, but not more, because the second segment is lost and
the rest of the segments are still unacknowledged). Hence, the
congestion window does not allow to send new segments, so
the receiver cannot send three duplicated ACKs. Therefore,
the sender remains inactive until the retransmission timer

associated to second lost segment expires (point). Then, the
segment is retransmitted and the transmission phase is slow
start again. In general, TCP Reno usually has to wait for the
retransmission timeout to recover from a two-segment loss,
and almost always in case of a three or more segments loss. To
be precise [20] states that “when two packets are dropped
from a window of data, the Reno sender is forced to wait for a
retransmit timeout whenever the congestion window is less
than 10 packets when Fast Recovery is initiated, and
whenever the congestion window is within two packets of the
receiver's advertised window when Fast Recovery is
initiated”.

In the case of SACK, after a burst loss detection by means
of duplicated ACKs (point), the congestion window is
reduced to flightsize/2 (point). As new duplicated ACKs
arrive, the congestion window remains constant. These
acknowledgements contain selective ACK information, so that
using that information, all the consecutive lost segments can be
retransmitted. When the ACKs confirming the reception of
these segments arrive, the transmission continues with the
congestion avoidance phase (point).

The case we have explained corresponds to the loss of a
burst with two segments belonging to a same TCP flow, but if
the burst has more than two segments, the behavior is similar
(whenever three duplicated ACKs arrive).

In this scenario, TCP Reno almost always recovers with a
timer expiration and continues transmission with slow start,
thereby reducing drastically the transmission rate.
Nevertheless, SACK recovers in approximately one RTT and
continues the transmission with just the window halved instead
of reducing it to one segment, like in the Reno case. Therefore,
SACK offers an important improvement of performance in this
scenario. This is the expected scenario in OBS networks,
hence the use of SACK is highly advisable in these networks.

3) Loss of a burst carrying a complete window of a TCP
flow

If a burst contains all the segments sent in a TCP
transmission window, its loss implies the expiration of the
timer. This is because the TCP sender (in both Reno and
SACK), does not receive any duplicated ACK (Figure 7).

Therefore, in summary, depending on the number of
segments lost in each burst, and the TCP version, TCP will
recover in a different way. TCP SACK presents benefits over
Reno in case multiple segment losses, except when the full
transmission window is lost.

C. Classification of traffic sources
As shown in the previous analysis, the number of segments

belonging to the same flow that are transported by each burst
has an impact on the performance of TCP over OBS networks.
In previous works, three different types of traffic sources have
been defined [8, 11-12]: fast, medium and slow flows. The
classification of a flow in one of the three categories depends
on the access rate (BW, measured in segments per second), on

the assembly period (Tb, in seconds), and on the maximum
transmission window (Wmax, in segments):
- A fast flow verifies that maxWTBW b ≥⋅ . This means that

the whole transmission window is transmitted in a single
burst.

- A medium flow fulfills max1 WTBW b <⋅< . Hence, the
content of a TCP transmission window is sent in several
bursts.

- A slow flow verifies that 1≤⋅ bTBW . Thus, each burst
contains only one segment.

For the medium flow case, the maximum number of
segments per burst is bTBWS ⋅=max . Hence, the number of
bursts that will carry Smax segments is ⎣ ⎦maxmaxmax SWN = ,
and the last burst will contain)mod(maxmax SWSlast =
segments. In total, there will be ⎡ ⎤maxmax SWNtotal = bursts.
Therefore, the mean number of segments per burst is:

⎪
⎪
⎩

⎪⎪
⎨

⎧
+⋅

=

flows slowfor ,1

flows mediumfor ,

flowsfast for ,
maxmax

max

total

last

N
SSN

W

S . (3)

0 5 10 15 20
0

10
20
30
40
50
60
70
80
90

100
110
120
130
140
150
160
170

co
ng

es
tio

n
w

in
do

w
 (

kb
yt

es
)

time (s)

 congestion window
 Max transmission window

Burst
loss

Retransmission
Timer
expiry

(a)

14 15 16 17 18 19
0

10
20
30
40
50
60
70
80
90

100
110
120
130
140
150
160
170

C
on

ge
st

io
n

w
in

do
w

 (
kb

yt
es

)

time (s)

 congestion window
 Max transmission window

Burst loss

Retransmission
Timer
expiry

Retransmission
timer

(b)

Figure 7: Evolution of the congestion window when a burst containing a
complete transmission window of the flow is lost. (a) Complete transmission
(b) Zoom around the burst loss.

However, it is important to remark that this classification is
based on a model with only one TCP client and server, so care
must be taken to avoid pitfalls. In the next section, we will
show, by means of simulations, that when additional traffic is
considered, the number of segments of a single TCP flow
being carried by a burst is reduced.

D. Amplification effect
One of the benefits of OBS is the so called amplification

effect or correlation benefit [9-10]. Let us assume that the
burst loss probability is 10-2 and that we want to transmit 1000
segments. If every burst carried five segments, we would need
200 bursts. Thus, in mean, two bursts would be lost. If, for
instance, TCP Reno is used, this would mean that after each
loss event, the transmission would go to the slow start phase.
On the other hand, if every burst carried 10 segments, then 100
bursts would be needed. In this case, only one burst (in mean)
would be lost. The behavior of TCP is basically the same when
either five or ten consecutive segments are lost. Thus, TCP
Reno would also switch to the slow start phase. However, as
only one burst is lost in this second situation, it would only run
once into that phase. Hence, this situation would lead to higher
throughput than the previous one. So, as the number of
segments per burst increases, the throughput increases as well.
This is the correlation benefit.

IV. SIMULATION STUDY OF TCP OVER OBS WITH AND
WITHOUT MULTIPLE DATA FLOWS.

With the aim of evaluating the performance of TCP over
OBS networks from a quantitative point of view, a simulation
model has been developed using OPNET Modeler 11.0 [24].

A. Simulation models
We have developed two simulation models. The first model

(Fig. 8) is based on the classic models used in the literature to
study TCP over OBS [8], [11-12]. Such a model only has one
TCP client and one server. Both transmission ways are
modeled, so that the ACKs are also assembled into bursts and
transmitted through a lossy OBS link. The second model (Fig.
9) is more pragmatic. The OBS burstifier is not only fed by the
TCP client (or server), but also by additional traffic, which is
created by means of fractal traffic generators [25]. The fractal
traffic generators provide an average rate of 900 packets per
second. The length of those packets is exponentially
distributed with average of 1024 bits, and the Hurst parameter
is 0.7. The rest of the simulation parameters employed in the
model have been set as shown in Figs. 8 and 9. Moreover, in
Table I, we show the most important TCP parameters which
have been used in the simulation.

Delay = 10 ms

TCP Client Servidor TCPOBS edge node OBS edge node

Delay = 10 msDelay = 30 ms

BW = 100 Mbit/s BW = 100 Mbit/sBW = 10Gbit/s

Lossless LosslessBurst loss probability p

Figure 8: Simulation model of TCP over OBS with only one TCP flow.

TCPclient TCP server

OBS edge
node

OBS edge
node

Core Delay = 30 ms

BW = 10Gbit/s

Fractal traffic
generator

Fractal traffic
generator

Delay = 10 ms

BW = 1Gbit/s

Delay = 10 ms

BW = 100Mbit/s

Delay = 10 ms
BW = 1Gbit/s

Delay = 10 ms
BW = 100Mbit/s

Figure 9: Simulation model for TCP over OBS with one TCP flow and
additional traffic sources.

Parameter Value
Maximum segment size 1460 bytes
Maximum transmission window 65535 bytes (44 segments approx.)
TCP Version Reno and SACK
Delayed ACK When used, timer set to 200 ms
Minimum retransmission timer 1 second

TABLE I: TCP PARAMETERS

B. Study of the number of TCP segments per burst
First of all, we have studied the number of segments of a

TCP flow carried by a burst (S), since it is a critical issue as
shown in Section III. For that aim, we have simulated the
transfer of files of 20 Mbytes through a lossless OBS network;
first, without any additional traffic, and then, together with
additional traffic. 500 file transfers have been simulated, and
the histogram of the number of segments of a TCP flow per
burst has been calculated. The burst aggregation timer was set
to two different values, 10 ms (which corresponds to a fast
flow scenario) and 1 ms (which corresponds to a medium flow
scenario).

Firstly, we have simulated the simple scenario (Fig. 8)
without delayed ACK. Figs. 10.a and 10.b show the results for
a medium and a fast source, respectively. The result, as
expected, is very deterministic, and shows that most of the
bursts carry 8 or 9 segments for the medium source, and 44
segments for the fast source. For instance, in the latter case, all
the segments of the transmission window (44 as stated in Table
I) are aggregated in a burst and transmitted. Then, the ACKs
for all those segments are aggregated in another burst and sent
back to the TCP client, and so on. However, when the delayed
ACK algorithm is switched on, the results (Figs. 10.c and
10.d) deviate from that behavior. When delayed ACK is used,
the TCP receiver does not immediately sends an
acknowledgement when a segment is received, but the ACK is
delayed until a second segment arrives or a timer expires. That
behavior leads to a certain amount of “fragmentation” of the
sequence of data segments and acknowledgements (they are
not always sent in a row, as it happened in the previous
simulations). For this reason, the histogram presents peaks for
other values of S, mainly at two and multiples of two, due to
that feature of acknowledging the second segment.

0.
13

0.
13

0.
06

0 0.
13

0 0.
06

19
.8

5

79
.6

4

0 1 2 3 4 5 6 7 8 9 10
0

10

20

30

40

50

60

70

80

90

100

pe
rc

en
ta

ge
 o

f b
ur

st
s

(%
)

segments per burst
(a) one flow and without delayed ACK for a medium flow.

0.
16

16
.6

0.
27

0 0.
05

16
.4

9

0.
05

0

66
.3

8

0 1 2 3 4 5 6 7 8 9 10
0

10

20

30

40

50

60

70

80

90

100

pe
rc

en
ta

ge
 o

f b
ur

st
s

(%
)

segments per burst
(c) one flow, with delayed ACK for a medium flow

57
.1

9

14
.9

8

9.
00

6.
61

4.
55

2.
96

1.
69

1.
28

1.
73

0 1 2 3 4 5 6 7 8 9 10
0

10

20

30

40

50

60

70

80

90

100

pe
rc

en
ta

ge
 o

f b
ur

st
 (

%
)

segments per burst
(e) multiple flows , without delayed ACK for a medium flow

5.
94

84
.9

9

0.
41 5.

32

0.
13 1.
75

0.
08

0.
85

0.
52

0 1 2 3 4 5 6 7 8 9 10
0

10

20

30

40

50

60

70

80

90

100

pe
rc

en
ta

ge
 o

f b
ur

st
s

(%
)

segments per burst
(g) multiple flows and using delayed ACK for a medium flow

0 5 10 15 20 25 30 35 40 45
0

10

20

30

40

50

60

70

80

90

100

pe
rc

en
ta

ge
 o

f b
ur

st
s

(%
)

segments per burst
(b) one flow and without delayed ACK for a fast flow.

0 5 10 15 20 25 30 35 40 45
0

10

20

30

40

50

60

70

80

90

100

pe
rc

en
ta

ge
 o

f b
ur

st
s

(%
)

segments per burst
(d) one flow and using delayed ACK for a fast flow

0 5 10 15 20 25 30 35 40 45
0

10

20

30

40

50

60

70

80

90

100

pe
rc

en
ta

ge
 o

f b
ur

st
s

(%
)

segments per burst
(f) multiple flows , without delayed ACK for a medium flow

0 5 10 15 20 25 30 35 40 45
0

10

20

30

40

50

60

70

80

90

100

pe
rc

en
ta

ge
 o

f b
ur

st
s

(%
)

segments per burst
(h) multiple flows , without delayed ACK for a medium flow

Figure 10: Histograms of the number of segments of a TCP flow per burst for different scenarios.

When background traffic is added, the results are
completely different (Figs. 10.e, 10.f, 10.g, 10.h). The bursts
generally carry a lower number of TCP segments of a flow
than in the previous scenarios. In this case, as the formation of
a burst can be initiated not only by the flow which is being
studied, but by any of the packets of the other traffic sources,
there is a significant fragmentation of the sequence of data
segments, as they will be sent in different bursts. Like in the
case with no additional traffic, if we switch the delayed ACK
on, the number of segments per burst is mainly distributed
over multiples of two.

To explain in more detail the impact of adding background
traffic, we will refer to Figs. 11 and 12. The former shows the
sequence number of the segments sent by the TCP sender
without background traffic for a fast flow without delayed
ACK. It is clear that the transmission is very bursty and
synchronized. Every RTT, all the segments of the TCP
window are transmitted in a row, so all these segments are
assembled into a single burst. Fig. 12 shows the case where the
burstifier is fed with additional traffic. The transmission begins
with the same behavior: all segments of the TCP window are
assembled together in a burst. However, as time goes by, the
transmission of all consecutive segments in a row is broken.
For instance, a packet of another flow arrived at the burstifier
and started the process of burst formation, so that when the
row of segments of the TCP flow that we are considering
arrived at the burstifier, a portion of them entered in the buffer
before the expiration of the burst aggregation timer, while the
rest arrived after the expiration, and then should be transmitted
in a different burst. Hence, the transmission of the segments is
finally spread along a RTT, and each burst contains a lower
number of segments of the flow. Therefore, after several
transmission rounds, the mean number of segments per burst
(S) reaches a steady state (Fig. 13 shows the moving average).
In these simulations we used a timer-based assembly
algorithm. If an algorithm based on burst size or a hybrid one
were used, we expect the results to be even more noticeable.

In order to be able to determine the throughput of TCP in
OBS networks, and to find what the real correlation benefit is,
it is necessary to know the average number of segments per
burst. We have measured this value for four scenarios, and for
different burst aggregation timers. Fig. 14 shows the
simulation results as well as the analytical results obtained for
a single TCP flow without additional traffic (equation 3). The
simulation shows that when additional traffic is considered, the
mean number of TCP segments of a TCP flow per burst is
much lower than in the case of the single flow. Regarding the
utilization or not of the delayed ACK feature, the differences
are not significant when additional traffic is considered, but
they are in the simple scenario. In summary, the results show
that the number of segments per bursts is highly overestimated
if we try to apply the results obtained when the burstifier is fed
by only one TCP flow, to a pragmatic scenario with multiple
traffic sources.

0 1 2 3 4
0

10

20

30

40

50

60

70

80

90

100

110

120

130

se
qu

en
ce

 n
um

be
r

(m
od

 1
32

)

time(s)
Figure 11: Packet trace, transfer of a single flow

0 1 2 3 4
0

10

20

30

40

50

60

70

80

90

100

110

120

130

se
qu

en
ce

 n
um

be
r

(m
od

 1
32

)

time(s)

Figure 12: Packet trace, transfer of a TCP flow in the model with additional
traffic

0 5 10 15 20 25 30
0

5

10

15

20

25

30

nu
m

be
r

of
 T

C
P

 s
eg

m
en

ts
 p

er
 b

ur
st

time (seconds)
Figure 13: Moving average of the number of segments per burst of a TCP
flow in a transmission.

1E-5 1E-4 1E-3 0.01 0.1
0

10

20

30

40

50

m
ea

n
nu

m
be

r
of

 s
eg

m
en

ts
 o

f a
 T

C
P

 fl
ow

 p
er

 b
ur

st

T
b
 (seconds)

 theoretical 1 client 1 server (without delayed ack)
 simulation with delayed ACK (no additional traffic)
 simulation without delayed ACK (with additional traffic)
 simulation with delayed ACK (with aditional traffic)
 simulation without delayed ACK (without aditional traffic)

Figure 14: Average number of segments of a TCP flow per burst.

C. Simulations for different assembly timers
Now, our aim is to quantify the impact on goodput, which is

defined as the useful data received at destination per unit of
time. The simulations have consisted in the transfer of one
hundred files of 20 Mbytes, setting the burst loss probability to
10-3. Higher probabilities would not be realistic, since an
operator would not deploy a network with such high losses.
The values of the timers have been chosen in the range of
previous studies. The simulations results are shown in Figs. 15
and 16. The average values are represented together with the
95% confidence interval. A number of conclusions can be
obtained from these figures.

TCP Reno vs. TCP SACK: The performance of TCP Reno
and SACK for low burstification timers (10-5-10-4), and for
high timers (around 100 ms) is very similar. For low timers,
the number of segments per burst is one, hence all losses are
equally solved by TCP Reno and SACK, as we explained in
Section III. For high timers, the lost of a burst usually means
the lost of the complete window of the TCP flow, and, again,
as described in Section III, both versions of TCP have the
same behavior. However, for the mid timers, SACK offers
better performance due to its capacity to recover from multiple
segment losses. Therefore, the results completely agree with
the qualitative analysis of Section III.

Results with and without delayed ACK: As we demonstrated
in [15], the goodput when the delayed ACK algorithm is
employed, is lower than when that algorithm is not activated.
The qualitative explanation was given in Section II.C, and can
be found in more detail in that reference.

Results with and without additional traffic: The results show
that for low timers there are no differences in performance
when considering or not additional traffic. However, for timers
from 0.3 to 10 ms, the goodput is higher for the scenario with
no additional traffic than for the scenario with background
traffic. This is due to the fact that the number of segments per
burst belonging to the same flow is higher when additional
traffic is not considered, thereby leading to a higher correlation

gain. On the other hand, for high timers, the bursts carry a very
high number of segments when no additional traffic is
considered, so the losses usually lead to a timeout event.
Hence, the losses are more harmful when no additional traffic
is considered for these high timers.

Optimal value of the burstification timer: The goodput
depends on the value of the burstification timer. The higher
goodput is obtained for timers from 0.3 to 10 ms. This is due
to the correlation gain. However, if the timer is set to a higher
value, the goodput decreases, being even lower than that
obtained for very low timers where there is not correlation
benefit. The reason for that behavior is that not only burst
losses affect the performance of TCP over OBS, but also the
delay penalty imposed by the burstifier (Section III.A).

1E-5 1E-4 1E-3 0.01 0.1
0

100

200

300

400

500

600

700

G
oo

dp
ut

 (
ky

te
s/

s)

T
b
 (seconds)

 SACK with delayed ACK (no additional traffic)
 SACK with delayed ACK (with additional traffic)
 Reno with delayed ACK (no additional traffic)
 Reno with delayed ACK (with additional traffic)
 theoretical TCP limit

Figure 15: TCP goodput for TCP Reno and SACK, with and without
additional traffic, with p =10-3, when the delayed ACK algorithm is used.

1E-5 1E-4 1E-3 0.01 0.1
0

100

200

300

400

500

600

700

G
oo

dp
ut

 (
kb

yt
es

/s
)

T
b
 (seconds)

 SACK without delayed ACK (no additional traffic)
 SACK without delayed ACK (with additional traffic)
 Reno without delayed ACK (no additional traffic)
 Reno without delayed ACK (with additional traffic)
 theoretical TCP limit

Figure 16: TCP goodput for TCP Reno and SACK, with and without
additional traffic, with p =10-3, when the delayed ACK algorithm is not used.

In order to evaluate the impact of the delay penalty
introduced by the burstifier, we define the following figure of
merit:

losses without)(Goodput
losses without)(Goodput

b_ref

b
delay T

T
F = , (4)

where Tb_ref is a value of the burstifier timer so small that the
bursts always contain one segment, and the delay in the
burstifier is very small when compared to the RTT. We have
chosen 10-5 seconds as it corresponds to the lowest value of
the timer used in the simulations.

As the TCP Send Rate is inversely proportional to RTT, and
the maximum increase in the RTT is 2Tb, it is expected that the
figure of merit will be, approximately,

b
delay TRTT

RTT
F

20

0

+
= . (5)

where RTT0 is the basic round trip time of the network, that is,
the round trip time when no burstification delay is considered.

Fig. 17 shows both the analytical figure of merit (equation
5) and the simulation results. They correspond to the networks
shown in Figs. 8 and 9 (RTT0 = 100 ms), when different
scenarios regarding to delayed ACK and background traffic
are considered. In this case, it is important to remark that since
there are no losses, there is no difference between TCP Reno
and SACK. As in the previous simulations, we have measured
the transfers of files of 20 Mbytes to obtain the experimental
results. The simulation results match with the expected figure
of merit of the delay penalty. In this case, the difference
between considering additional traffic or not, is almost
negligible. The most significant conclusion is that values of the
burstification timer lower than 10 milliseconds do not harm
TCP goodput. However, for higher values, there is significant
performance degradation. Hence, high burstification timers are
very influenced by delay penalty, and that is why the goodput
significantly decreases for those timers in Figs. 15 and 16.

1E-5 1E-4 1E-3 0.01 0.1
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

F
de

la
y

T
b

 simulation with traffic without delayed ACK
 simulation with traffic with delayed ACK
 simulation without traffic without delayed ACK
 simulation without traffic with delayed ACK
 theoretical

Figure 17: Fdelay: Figure of merit of the delay penaly for RTT0=100ms

V. SUMMARY
We have performed a simulation study of the performance

of TCP over OBS networks when multiple traffic sources feed
a burstifier. The simulations have been used with a double
purpose, to present quantitative results, but also to provide
qualitative explanations of the processes and factors with an
impact on performance.

It has been shown that when additional traffic is considered,
the correlation gain is not as high as when only one TCP flow
is sent through the network. The reason is that the bursts carry
a lower number of segments belonging to the considered TCP
flow. Moreover, it has been confirmed that TCP SACK is
highly beneficial for OBS networks, as it leads to higher
goodput than TCP Reno, and that if the delayed ACK feature
is activated, it leads to lower goodput. This latter fact had been
demonstrated for the single flow case, but not for the case
where multiple traffic sources share a burstifier.

We are currently working in an analytical model to
complement and enhance the simulation results. Also, in future
work, the performance will be analyzed considering the
utilization of larger transmission windows, as well as new TCP
versions.

REFERENCES
[1] R. Ramaswami and K. N. Sivarajan, Optical Networks: A Practical

Perspective, Morgan Kauffman Publishers, Inc., 1998.
[2] T. S. El-Bawab and J.-D. Shin, “Optical Packet Switching in Core

Networks: Between Vision and Reality”, IEEE Communications
Magazine, vol. 40, no. 9, pp. 60-65, Sep. 2002.

[3] Y. Chen, C. Qiao and X. Yu, “Optical Burst Switching: A New Area in
Optical Networking Research”, IEEE Network, vol. 18, no. 3, pp. 16-23
May/June 2004.

[4] Y. Xiong, M. Vandenhoute and H. Cankaya, “Control Architecture in
Optical Burst-Switched WDM Networks”, IEEE Journal on Selected
Areas in Communications, vol. 18, no. 10, pp. 1838-1851 Oct. 2000.

[5] X. Yu, Y. Chen and C. Qiao, “Study of Traffic Statistics of Assembled
Burst Traffic in Optical Burst Switched Networks”, Proc. Opticomm
2002, pp. 149-159.

[6] M. Düser and P. Bayvel, “Burst aggregation control and scalability of
wavelength-routed optical-burst-switched (WR-OBS) networks”, Proc.
ECOC 2002, vol. 1, pp. 1-2.

[7] R. Stevens, TCP/IP Illustrated, Volume 1: The Protocols, Addison-
Wesley, 1994.

[8] A. Detti and M. Listanti, “Impact of Segments Aggregation on TCP
Reno Flows in Optical Burst Switching Networks”, Proc. of INFOCOM
2002, vol. 3, pp. 1803-1812.

[9] A. Detti and M. Listanti “Amplification effects of the send rate of TCP
connection through an optical burst switching network”, Optical
Switching and Networking, vol. 2, no. 1, pp 49–69, 2005

[10] X. Yu, Y. Chen and C. Qiao, “Study of Traffic Statistics of Assembled
Burst Traffic in Optical Burst Switched Networks”, Proc. Opticomm
2002, pp. 149-159.

[11] X. Yu, C. Qiao, Y. Liu and D. Towsley, “Performance Evaluation of
TCP Implementations in OBS Networks”, Technical Report 2003-13,
CSE Dept., SUNY, Buffalo, 2003

[12] X. Yu, C. Qiao and Y. Liu, “TCP Implementations and False Time Out
Detection in OBS Networks”, Proc. of INFOCOM 2004, pp. 774-784.

[13] S. Gowda, R. K. Shenai, K. M. Sivalingam, and H. C. Cankaya,
“Performance Evaluation of TCP over Optical Burst-Switched (OBS)
WDM Networks”, Proc. IEEE ICC 2003, pp. 1433–1437.

[14] R. Pleich, M. de Vega Rodrigo and J. Goetz, “Performance of TCP over
Optical Burst Switching Networks”, Proc. ECOC 2005, vol. 4, pp. 883-
884.

[15] O. González, I. de Miguel, N. Merayo, P. Fernández, R. M. Lorenzo and
E. J. Abril, “The Impact of Delayed ACK in TCP Flows in OBS
Networks”, Proc. of NOC 2005, pp. 367-374.

[16] H. Guo, J. Wiu, J. Lin and Y. Li, “Multi-QoS Traffic Transmission
Experiments on OBS network testbed”, Proc. of ECOC 2005, vol. 3,
pp. 601-602.

[17] M. Hassan and R. Jain, High Performance TCP/IP Networking:
Concepts, Issues, and Solutions, Prentice-Hall, 2003.

[18] M. Allman, V. Paxson and W. Stevens, “TCP Congestion Control”,
RFC 2581, April 1999.

[19] M. Mathis, J. Mahdavi, S. Floyd and A. Romanow, “TCP Selective
Acknowledgment Options”, RFC 2018, October 1996.

[20] K. Fall and S. Floyd “Simulation-based Comparisons of Tahoe, Reno
and SACK TCP”, ACM SIGCOMM Computer Communication Review,
vol. 26, pp. 5-21, July 1996.

[21] J. Postel, “Transmision Control Protocol”, RFC 793, IETF, Sep. 1981
[22] R. Braden, “Requirements for Internet Hosts – Communication Layers”,

RFC 1122, Oct. 1989.
[23] M. Allman, “On the Generation and Use of TCP Acknowledgments”,

ACM SIGCOMM Computer Communication Review, vol. 28, pp. 4-21,
Oct. 1998.

[24] OPNET Modeler. http://www.opnet.com
[25] B. Ryu and S. Lowen, “Fractal Traffic Models for Internet Simulation”,

IEEE Int’l Symposium on Computer Communications, pp. 200-206,
July 2000.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /ENU (Use these settings to create PDF documents with higher image resolution for high quality pre-press printing. The PDF documents can be opened with Acrobat and Reader 5.0 and later. These settings require font embedding.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /FRA <FEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e>
 /KOR <FEFFace0d488c9c8c7580020d504b9acd504b808c2a40020d488c9c8c7440020c5bbae300020c704d5740020ace0d574c0c1b3c4c7580020c774bbf8c9c0b97c0020c0acc6a9d558c5ec00200050004400460020bb38c11cb97c0020b9ccb4e4b824ba740020c7740020c124c815c7440020c0acc6a9d558c2edc2dcc624002e0020c7740020c124c815c7440020c0acc6a9d558c5ec0020b9ccb4e000200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e0020c7740020c124c815c7440020c801c6a9d558b824ba740020ae00af340020d3ecd5680020ae30b2a5c7440020c0acc6a9d574c57c0020d569b2c8b2e4002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe7f6e521b5efa76840020005000440046002065876863ff0c5c065305542b66f49ad8768456fe50cf52068fa87387ff0c4ee575284e8e9ad88d2891cf76845370524d6253537030028be5002000500044004600206587686353ef4ee54f7f752800200020004100630072006f00620061007400204e0e002000520065006100640065007200200035002e00300020548c66f49ad87248672c62535f0030028fd94e9b8bbe7f6e89816c425d4c51655b574f533002>
 /CHT <FEFF4f7f752890194e9b8a2d5b9a5efa7acb76840020005000440046002065874ef65305542b8f039ad876845f7150cf89e367905ea6ff0c9069752865bc9ad854c18cea76845370524d521753703002005000440046002065874ef653ef4ee54f7f75280020004100630072006f0062006100740020548c002000520065006100640065007200200035002e0030002053ca66f465b07248672c4f86958b555f300290194e9b8a2d5b9a89816c425d4c51655b57578b3002>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

