
 

  
Abstract—Optical burst switching is a promising alternative 

for next generation optical networks. On the other hand, TCP is 
expected to continue as the prevailing transport protocol. 
Therefore, TCP over OBS needs to be studied in depth. Previous 
work on this topic has usually considered the transmission of a 
single TCP flow through the OBS network. However, a more 
pragmatic scenario is that where the burstifier is fed by multiple 
data flows. In this paper we study, by means of simulation, the 
performance of TCP Reno and SACK over OBS networks in that 
scenario. We compare the results with those obtained for the 
single flow situation, in terms of the number of segments carried 
per burst and goodput, showing significant differences in 
behavior and performance. 
 

Index Terms—TCP, OBS, multiple traffic sources 
 

I. INTRODUCTION 
HE spectacular growth of Internet traffic has fostered 
research in optical networking, due to the huge amount of 

bandwidth offered by the optical fiber. A number of switching 
paradigms have been proposed with the aim of designing these 
networks. Wavelength-routed optical networks are based on 
optical circuit switching [1]. It is a relatively mature 
technology, but usually leads to inefficient use of bandwidth. 
An alternative to improve bandwidth utilization as well as to 
enhance adaptability to traffic conditions are optical packet-
switched networks. However, optical packet switching is still 
in its early stages and lacks of maturity [2]. An intermediate 
and promising option is Optical Burst Switching (OBS) [3]. 
OBS combines advantages from both optical circuit and packet 
switching, managing bandwidth efficiently, and being a 
feasible technology in the medium term. For these reasons 
there is a significant interest in this technology, which has led 
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to the proposal of architectural variations, to studies about 
performance, and even to the implementation of OBS testbeds.  

In OBS networks, packets ⎯usually IP datagrams⎯, arrive 
at the edge nodes, where they are classified in electronic 
buffers according to their destination and class of service, and 
are grouped into bursts (Figure 1). These bursts are transmitted 
through the core optical network towards the destination edge 
node, where the burst is disassembled into IP packets. Prior to 
the transmission of a burst, a burst control packet (BCP) is 
sent. The BCP usually contains information about the 
destination edge node, the length of the burst, the offset time 
between the BCP and the burst, and the channel (typically a 
wavelength) in which the burst will be sent. Since intermediate 
nodes receive the BCP some time before the arrival of the 
burst, they have enough time to determine the next hop for the 
control packet (and for the burst), to select the wavelength to 
use, and to configure the switching matrix of the node, so that 
all resources are ready exactly when the burst arrives.  

One of the key issues in OBS is the method employed to 
aggregate the packets into bursts. This process is usually 
known as burstification. There are several assembly algorithms 
[3-6]. One method commonly used, and the one that we will 
use in this study, is the timeout-based assembly method. When 
a packet arrives at a buffer (and if a burst formation process 
has not started yet), a new burst begins to be assembled, and a 
timer is activated. The following packets arriving at the buffer 
are added to the burst until the timer expires. Other algorithms 
are based on burst size. These methods aggregate packets until 
the size of the burst reaches a size threshold. There are also 
hybrid approaches, which combine the utilization of a timer 
and a size threshold, and adaptive algorithms, which 
dynamically modify the timer and/or the size threshold 
according to traffic conditions [6]. 
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Figure 1: OBS Network architecture. 
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One of the issues that have recently received significant 
attention is the evaluation of the network performance when 
the characteristics of the upper layers of the protocol tower are 
considered. TCP [7] is the de facto standard in transport 
protocols, and is used by most of user applications, such as 
web browsing, e-mail or FTP. Moreover, it is expected that 
TCP will still hold the leadership in the medium and long term. 
Hence, is necessary to analyze the performance of TCP over 
OBS networks, because this combination can be a feasible 
alternative for the next generation high speed optical Internet. 
Detti et al. first studied the performance of TCP Reno over 
OBS from an analytical point of view [8]. They assumed a 
simple network model consisting of only one TCP client and 
one server connected by a lossy OBS link with a lossless 
return link. Later, they improved the model by considering a 
lossy return link [9]. They proved the existence of an effect, 
which they named correlation benefit, which is due to the 
aggregation process, and that can lead, in some cases, to a 
significant increase of the TCP transmission rate. In order to 
check the existence of the correlation benefit in pragmatic 
scenarios, they also studied a sample scenario with additional 
traffic sources. While such simulation shows the correlation 
benefit, quantitative results in that scenario deviate from the 
analytical model (since that model was obtained for the simple 
one client-one server scenario). Hence, it becomes clear the 
necessity of performing both a theoretical and a much more 
extensive simulation analysis to evaluate the impact of 
multiple traffic sources on TCP over OBS networks. Yu et al. 
[10-12], compared the impact on performance of different 
versions of TCP, namely Reno, SACK and New Reno, both 
analytically and by means of simulation, showing that SACK is 
the version that usually leads to higher throughput. However, 
they only considered the simple scenario with only one TCP 
client and server. Gowda et al. [13] presented a number of 
simulation studies about the impact on throughput and delay of 
the maximum burst size and timeout when feeding the OBS 
network with three and 30 TCP sessions, but they provided 
just a few qualitative explanations of the results. Pleich et al. 
[14] presented some simulation results of TCP Reno over OBS 
considering up to 900 TCP sources, finding than realistic TCP-
controlled traffic on top of OBS is much more robust to burst 
losses than predicted by other papers. They considered that 
“probably the claimed sensibility of throughput to burst losses 
depends on old (simulated) TCP versions or on too few traffic 
sources”. On the other hand, Gonzalez et al. [15] provided a 
qualitative explanation, supported by simulation results, 
showing that the throughput in OBS networks degrades when 
the delayed ACK feature of TCP is employed. Finally, Guo et 
al. [16] reported some experiments done with TCP over an 
OBS testbed. 

In this paper, we perform an extensive simulation study of 
the performance of TCP over OBS networks when multiple 
traffic sources feed a burstifier. Not only quantitative results 
are presented, but also qualitative explanations of the impact 
of different scenarios and parameters such as the utilization of 

different versions of TCP (Reno and SACK), the utilization or 
not of the delayed ACK algorithm, the impact of the 
burstification timer, and of course, the comparison of scenarios 
with a single traffic flow and with additional background 
traffic.  

First, in section II, we review the basic characteristics of 
TCP, which are required to understand its behavior. Then, in 
Section III, we explain the most important problems that TCP 
has in an OBS network, mainly delay and burst losses, 
supporting our explanations with simulation results. Finally, in 
Section IV, we analyze the distribution of the TCP segments of 
a flow when carried by optical bursts, and evaluate the 
performance of TCP over OBS networks in the scenarios 
mentioned above.  

II. INTRODUCTION TO TCP 
TCP has become the de facto standard in transport protocols 

and it is used by most of user applications [7]. This protocol is 
in charge of controlling end-to-end communications, using the 
facilities provided by the network layer, which is usually IP. In 
this section, we briefly describe the basic behavior of TCP; 
since, as we will show later, some of the characteristics of TCP 
explained here have a significant impact on the performance of 
OBS networks. 

A. TCP transmission, flow and congestion control 
TCP sends data in chunks, called segments, which are 

acknowledged by the receiver. Each segment is numbered with 
the aim of facilitating both reordering in the destination node 
and detecting lost segments. TCP uses a sliding window 
mechanism for flow control. Hence, only a certain number of 
segments are allowed to be sent. When these segments are 
acknowledged, TCP is allowed to send more data. The 
transmission window determines the maximum number of 
segments that can be in transit, that is, how many segments can 
have been sent but have not been acknowledged yet. Each time 
an acknowledgement is received, the window is updated, and 
TCP is allowed to send new segments. 

Another important concept in TCP is the round trip time 
(RTT), which is defined as the time between the sending of a 
segment and the arrival of its acknowledgement (ACK). The 
most common situation is that all the segments of the window 
are transmitted within a RTT. Thus, an estimate of the TCP 
transmission rate, X(t), in segments per second, is 

 

RTT
tWtX )()( = ,        (1) 

 
where W(t) is the size (in segments) of the transmission 
window at a certain time. Therefore, the maximum TCP 
throughput is [17] 

RTT
WX max

max = ,       (2) 

 
where Wmax is the maximum size of the transmission window. 



 

The transmission window size is determined by the 
minimum of two limits, one imposed by the receiver, the 
reception buffer or receiver advertised window, which 
indicates the amount of data that it is able to buffer, and 
another imposed by the sender, the congestion window, which 
is a limit on the segments in transit in order not to overload the 
network. TCP has several phases in the transmission, where 
the congestion window varies in a different way. Initially, TCP 
has a low congestion window, typically one segment, and its 
size is increased by one segment every time an 
acknowledgement (ACK) is received. This phase is called slow 
start, and results in an exponential increase of the congestion 
window, as shown in Fig. 2.a. This behavior ends when the 
congestion window reaches a certain threshold, ssthresh (slow 
start threshold). The next phase is congestion avoidance, 
where the congestion window is increased at a slower rate, at 
most one segment per round trip time, hence linearly 
increasing with time (Fig. 2.a). The purpose of increasing the 
congestion window at a slower rate is not to overflow the 
network. Fig. 2.b shows the evolution of the transmission 
window, which is the minimum of the congestion window and 
the receiver advertised window (or reception buffer). 
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Figure 2: (a) Evolution of the congestion window for a TCP flow.  
(b) Evolution of the transmission window for a TCP flow. 
 

B. Reliability of the transmission 
TCP has a number of mechanisms to detect and recover 

from segment losses, thereby providing transmission 
reliability. TCP was created with the idea that the loss of a 
segment is a clear indication of congestion (something which 
is not usually true in an optical network). Thus, when a 
segment loss is detected, the aim of the recovery mechanisms 
is not only to retransmit the lost segment, but also to slow 
down the transmission rate (by means of reducing the 
congestion window) in order to avoid further network 
congestion. 

TCP has two ways of detecting losses, by the triggering of a 
retransmission timeout and by means of the reception of three 
duplicate ACKs. As we previously said, all segments must be 
acknowledged. When a segment is sent, a timer called 

retransmission timer is set. If the timer expires before the 
arrival of the ACK, it is assumed that the segment was lost. 
Thus, when this timer expires, the lost segment is 
retransmitted, and the transmission goes to the beginning of 
the slow start phase. Thus, the TCP transmission rate is 
drastically reduced. The second method to detect losses is the 
reception of duplicate ACKs. When a destination TCP node 
receives a segment whose sequence number is not the expected 
one, but a higher one, so that one segment may have been lost, 
it must send a duplicated ACK immediately, confirming again 
the segments already acknowledged. When three duplicated 
ACKs (four identical ACKs) are received by the TCP source, 
the segment is retransmitted without waiting for the timer 
expiration. This mechanism is called fast retransmit [18]. 
Sometimes, depending on the TCP version employed, this 
mechanism is combined with fast recovery [18]. When fast 
recovery is used, the TCP sender reduces the congestion 
window to roughly half of the size of the transmission window 
(additional details can be found in [18]). In this way, the 
reduction of the transmission rate is not as drastic as in the 
case of the timer expiration. Fast retransmit and fast recovery 
are efficient methods when only one segment is lost, but they 
are not so efficient when several consecutive segments are lost. 
This fact will be shown and explained in Section III, where we 
analyze its impact in OBS networks. 

With the aim of improving the performance in the case of 
multiple segment losses, a technique called selective 
acknowledgement (SACK) has been proposed [19, 20]. The 
selective acknowledgment is an ACK which includes an 
additional field where, if the segments arrive out of order, the 
receiver tells which segments have arrived out of order and 
how many consecutive segments have been received. In this 
way, the sender is able to know how many segments have been 
lost and how many have arrived correctly. Hence, the sender 
can retransmit all the lost segments without waiting for the 
timer expiration. 

There are a number of TCP versions such as Tahoe, Reno, 
New Reno, SACK, and Vegas. The main differences among 
them are the algorithms that they employ when congestion is 
detected. In this paper we focus on the most important TCP 
versions nowadays: TCP Reno, which implements fast 
retransmit and fast recovery, and TCP SACK, which also uses 
those algorithms together with selective acknowledgement. 

 

C. Delayed ACK 
The first version of the TCP protocol [21], states that a TCP 

receiver must send an acknowledgement for each incoming 
segment. This behavior was later modified by RFC 1122 [22], 
which specifies the delayed ACK algorithm. In the event of an 
incoming segment, the TCP receiver does not immediately 
send an acknowledgement. Specifically, the ACK is delayed 
until a second segment arrives or a timer expires. Delayed 
ACK was introduced to reduce the load in the network. 
However, this improvement is only significant in asymmetric 
networks. Moreover, a TCP sender increases its congestion 



 

window according to the number of ACKs received, not to the 
bytes acknowledged. Hence, when delayed ACK is not used, 
the congestion window increases faster, leading to higher TCP 
transmission rates [23].  

III. IMPACT OF THE BURSTIFICATION IN TCP 
Since in an OBS network, packets are aggregated into bursts 

before being transmitted, the performance of TCP differs from 
that in ordinary packet networks. First of all, packets suffer an 
additional delay in the transmitter due to the burstification 
process. Secondly, when a burst is lost, several segments 
belonging to the same TCP connection may be lost. Hence, 
OBS networks are more prone to suffer the lost of consecutive 
segments than packet networks. 

A. Impact of delay penalty 
IP datagrams, which contain TCP segments, are grouped 

into bursts in the ingress nodes of the OBS network. The 
assembly of the datagrams into bursts introduces an additional 
delay, due to the waiting time until the burst is completed. 
Hence, the RTT is increased, and therefore the TCP 
throughput (see equation 1) is reduced. While being 
assembled, a TCP segment has to wait between 0 and Tb until 
the burst is completed (being Tb the burst aggregation time). 
As the segment containing data waits at maximum Tb, and its 
ACK also waits at maximum Tb before being sent back, in the 
worst case, the RTT will be increased by 2Tb [11]. 

B. Impact of burst losses 
The most influential aspect on TCP performance is the loss 

of bursts due to contention at intermediate nodes. The loss of a 
burst generally implies the loss of several consecutive TCP 
segments belonging to the same flow. As mentioned in Section 
II, TCP has two ways to detect segment losses; either by 
means of the reception of duplicated ACKs, or by means of the 
expiration of a retransmission timeout. In OBS, bursts contain 
several segments; hence, if a burst is lost, depending on the 
number of segments it contains (when compared to the size of 
the transmission window), TCP will have a different reaction. 
If a burst which contains a complete transmission window is 
lost, the retransmission timer will expire and the transmission 
will switch to the slow start phase. On the other hand, if the 
lost burst does not contain a complete window, out of order 
segments will arrive at the receiver, so duplicated ACKs will 
be sent, and the mechanisms of fast retransmit and fast 
recovery will enter into action.  

It is important to remark that in a pragmatic OBS network, a 
burst will carry TCP segments associated to different TCP 
connections or flows. This is due to the fact that different 
sources will be feeding the burstifiers of the edge nodes. 
Therefore, in case of the loss of a burst, the influence on the 
performance of TCP depends on the total number of segments 
belonging to the same flow that are carried by that burst. In 
order to analyze the impact of this issue from a qualitative 
point of view, we have performed a number of simulation 
experiments in OPNET Modeler for TCP Reno and SACK. 

The main results can be summarized in three scenarios1. 
 

1) Loss of a burst carrying only one segment of a TCP 
flow 

Let us assume that a burst is transmitted from an edge node 
A to another B. The burst only carries one segment from a 
TCP flow, and unfortunately, the burst is lost.  

Fig. 3 shows the evolution of the congestion window for 
TCP Reno for this scenario. Fig. 3.a shows the complete 
transmission, while Fig. 3.b shows a zoom around the instant 
when the burst loss takes place. In those figures, we have 
numbered a few noteworthy points of the simulation. At point 

, the loss of the burst occurs. That burst only contains one 
segment of the TCP flow that we are analyzing. If the 
transmission window was big enough, additional segments will 
have been sent in other bursts after that lost one. Hence, if at 
least three segments reach the destination node after the loss, 
the TCP sink (at node B) will detect that they are out of order, 
so it will send three duplicated ACKs (one for each out of 
order segment). When the third duplicated ACK reaches node 
A, the TCP source will trigger the fast retransmit and fast 
recovery mechanisms. First of all, the congestion window is 
reduced to fligthsize/2 + 3 (point ). Flightsize is the number 
of segments that have been sent but have not been 
acknowledged yet, that is, the number of segments in transit, 
and its value usually matches with that of the transmission 
window. Then, the segment of the flow which was lost (due to 
the loss of the burst) is retransmitted, and the congestion 
window is increased every time a new duplicated ACK arrives 
(points ). Finally, when the ACK that acknowledges the 
retransmitted segment arrives, the congestion window is 
reduced to the half of flightsize (point ).  

In this scenario, the duplicated ACKs arrive at the TCP 
source before the expiration of the retransmission timer. Thus, 
the reduction of the transmission rate is not as significant as if 
the timer had expired. 

The behavior of TCP SACK is shown in Fig. 4. After the 
burst loss (point ), when the three duplicated ACKs arrive, 
the congestion window is reduced to the half of flightsize 
(point ), and the lost segment is retransmitted. Then, new 
duplicated ACKs arrive (points ). One RTT after 
retransmitting the segment, its ACK arrives confirming the 
reception at destination, and then the size of the congestion 
window keeps growing according to the congestion avoidance 
phase (point ). 

Therefore, both TCP Reno and SACK recover from the 
segment loss in a short time, one RTT after receiving the three 
duplicated ACKs. After the recovery, the congestion window 
is reduced to the half of flightsize. Hence, in this scenario, the 
behavior of both versions is very similar. 

 

 
1 There are additional scenarios (or subscenarios) to those described here, 

but these are the most relevant ones.  
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Figure 3: Evolution of the congestion window for TCP Reno when a burst 
containing one segment of the flow is lost. (a) Complete transmission. (b) 
Zoom around the burst loss. 
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Figure 4: Evolution of the congestion window for TCP SACK when a burst 
containing one segment of the flow is lost. 

 
2) Loss of a burst carrying two or more segments of a 
TCP flow 

Now, we study the case where a burst carrying two segments 
of a TCP flow is lost, and the following burst (with new 
segments) arrives correctly. Figs. 5 and 6 show the behavior of 
TCP Reno and TCP SACK, respectively.  
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Figure 5: Evolution of the congestion window for TCP Reno when a burst 
containing two segments of a flow is lost. 
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Figure 6: Evolution of the congestion window for TCP SACK when a burst 
containing two segments of a flow is lost. 

 
In the case of TCP Reno (Fig. 5), after a burst loss detection 

by means of duplicated ACKs (point ), the sender 
retransmits the first segment lost and reduces the congestion 
window to fligthsize/2 + 3 segments (point ). Then, as new 
duplicated ACKs arrive, the congestion window is increased 
by one segment (points ). In the example shown in the 
figure, the sender has in transit as many segments as the 
receiver advertised window. Hence, no matter the value of the 
congestion window, the TCP sender cannot send any new data. 
If the receiver advertised window had been higher than the 
congestion window when fast recovery started, the sender 
could have been allowed to send new segments in some of 
these window updates (but this is not the case considered in 
the example). Then, the ACK of the first lost segment (which 
was generated after the reception of the retransmitted segment) 
arrives, and the congestion window is reduced (point ). At 
this point, in the example, the number of segments in transit is 
reduced just by one (thanks to the segment that has arrived 
correctly, but not more, because the second segment is lost and 
the rest of the segments are still unacknowledged). Hence, the 
congestion window does not allow to send new segments, so 
the receiver cannot send three duplicated ACKs. Therefore, 
the sender remains inactive until the retransmission timer 



 

associated to second lost segment expires (point ). Then, the 
segment is retransmitted and the transmission phase is slow 
start again. In general, TCP Reno usually has to wait for the 
retransmission timeout to recover from a two-segment loss, 
and almost always in case of a three or more segments loss. To 
be precise [20] states that “when two packets are dropped 
from a window of data, the Reno sender is forced to wait for a 
retransmit timeout whenever the congestion window is less 
than 10 packets when Fast Recovery is initiated, and 
whenever the congestion window is within two packets of the 
receiver's advertised window when Fast Recovery is 
initiated”. 

In the case of SACK, after a burst loss detection by means 
of duplicated ACKs (point ), the congestion window is 
reduced to flightsize/2 (point ). As new duplicated ACKs 
arrive, the congestion window remains constant. These 
acknowledgements contain selective ACK information, so that 
using that information, all the consecutive lost segments can be 
retransmitted. When the ACKs confirming the reception of 
these segments arrive, the transmission continues with the 
congestion avoidance phase (point ). 

The case we have explained corresponds to the loss of a 
burst with two segments belonging to a same TCP flow, but if 
the burst has more than two segments, the behavior is similar 
(whenever three duplicated ACKs arrive). 

In this scenario, TCP Reno almost always recovers with a 
timer expiration and continues transmission with slow start, 
thereby reducing drastically the transmission rate. 
Nevertheless, SACK recovers in approximately one RTT and 
continues the transmission with just the window halved instead 
of reducing it to one segment, like in the Reno case. Therefore, 
SACK offers an important improvement of performance in this 
scenario. This is the expected scenario in OBS networks, 
hence the use of SACK is highly advisable in these networks. 

3) Loss of a burst carrying a complete window of a TCP 
flow 

If a burst contains all the segments sent in a TCP 
transmission window, its loss implies the expiration of the 
timer. This is because the TCP sender (in both Reno and 
SACK), does not receive any duplicated ACK (Figure 7).  

Therefore, in summary, depending on the number of 
segments lost in each burst, and the TCP version, TCP will 
recover in a different way. TCP SACK presents benefits over 
Reno in case multiple segment losses, except when the full 
transmission window is lost. 
 

C. Classification of traffic sources 
As shown in the previous analysis, the number of segments 

belonging to the same flow that are transported by each burst 
has an impact on the performance of TCP over OBS networks. 
In previous works, three different types of traffic sources have 
been defined [8, 11-12]: fast, medium and slow flows. The 
classification of a flow in one of the three categories depends 
on the access rate (BW, measured in segments per second), on 

the assembly period (Tb, in seconds), and on the maximum 
transmission window (Wmax, in segments): 
- A fast flow verifies that maxWTBW b ≥⋅ . This means that 

the whole transmission window is transmitted in a single 
burst. 

- A medium flow fulfills max1 WTBW b <⋅< . Hence, the 
content of a TCP transmission window is sent in several 
bursts. 

- A slow flow verifies that 1≤⋅ bTBW . Thus, each burst 
contains only one segment.  

For the medium flow case, the maximum number of 
segments per burst is bTBWS ⋅=max . Hence, the number of 
bursts that will carry Smax segments is ⎣ ⎦maxmaxmax SWN = , 
and the last burst will contain )mod( maxmax SWSlast =  
segments. In total, there will be ⎡ ⎤maxmax SWNtotal =  bursts. 
Therefore, the mean number of segments per burst is: 
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Figure 7: Evolution of the congestion window when a burst containing a 
complete transmission window of the flow is lost. (a) Complete transmission 
(b) Zoom around the burst loss. 



 

However, it is important to remark that this classification is 
based on a model with only one TCP client and server, so care 
must be taken to avoid pitfalls. In the next section, we will 
show, by means of simulations, that when additional traffic is 
considered, the number of segments of a single TCP flow 
being carried by a burst is reduced. 

D. Amplification effect 
One of the benefits of OBS is the so called amplification 

effect or correlation benefit [9-10]. Let us assume that the 
burst loss probability is 10-2 and that we want to transmit 1000 
segments. If every burst carried five segments, we would need 
200 bursts. Thus, in mean, two bursts would be lost. If, for 
instance, TCP Reno is used, this would mean that after each 
loss event, the transmission would go to the slow start phase. 
On the other hand, if every burst carried 10 segments, then 100 
bursts would be needed. In this case, only one burst (in mean) 
would be lost. The behavior of TCP is basically the same when 
either five or ten consecutive segments are lost. Thus, TCP 
Reno would also switch to the slow start phase. However, as 
only one burst is lost in this second situation, it would only run 
once into that phase. Hence, this situation would lead to higher 
throughput than the previous one. So, as the number of 
segments per burst increases, the throughput increases as well. 
This is the correlation benefit. 

IV. SIMULATION STUDY OF TCP OVER OBS WITH AND 
WITHOUT MULTIPLE DATA FLOWS. 

With the aim of evaluating the performance of TCP over 
OBS networks from a quantitative point of view, a simulation 
model has been developed using OPNET Modeler 11.0 [24].  

A. Simulation models 
We have developed two simulation models. The first model 

(Fig. 8) is based on the classic models used in the literature to 
study TCP over OBS [8], [11-12]. Such a model only has one 
TCP client and one server. Both transmission ways are 
modeled, so that the ACKs are also assembled into bursts and 
transmitted through a lossy OBS link. The second model (Fig. 
9) is more pragmatic. The OBS burstifier is not only fed by the 
TCP client (or server), but also by additional traffic, which is 
created by means of fractal traffic generators [25]. The fractal 
traffic generators provide an average rate of 900 packets per 
second. The length of those packets is exponentially 
distributed with average of 1024 bits, and the Hurst parameter 
is 0.7. The rest of the simulation parameters employed in the 
model have been set as shown in Figs. 8 and 9. Moreover, in 
Table I, we show the most important TCP parameters which 
have been used in the simulation. 
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Figure 8: Simulation model of TCP over OBS with only one TCP flow. 
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Figure 9: Simulation model for TCP over OBS with one TCP flow and 
additional traffic sources. 

 
Parameter Value 
Maximum segment size 1460 bytes 
Maximum transmission window 65535 bytes (44 segments approx.) 
TCP Version Reno and SACK 
Delayed ACK When used, timer set to 200 ms  
Minimum retransmission timer 1 second 

TABLE I: TCP PARAMETERS 
 

B. Study of the number of TCP segments per burst 
First of all, we have studied the number of segments of a 

TCP flow carried by a burst (S), since it is a critical issue as 
shown in Section III. For that aim, we have simulated the 
transfer of files of 20 Mbytes through a lossless OBS network; 
first, without any additional traffic, and then, together with 
additional traffic. 500 file transfers have been simulated, and 
the histogram of the number of segments of a TCP flow per 
burst has been calculated. The burst aggregation timer was set 
to two different values, 10 ms (which corresponds to a fast 
flow scenario) and 1 ms (which corresponds to a medium flow 
scenario). 

Firstly, we have simulated the simple scenario (Fig. 8) 
without delayed ACK. Figs. 10.a and 10.b show the results for 
a medium and a fast source, respectively. The result, as 
expected, is very deterministic, and shows that most of the 
bursts carry 8 or 9 segments for the medium source, and 44 
segments for the fast source. For instance, in the latter case, all 
the segments of the transmission window (44 as stated in Table 
I) are aggregated in a burst and transmitted. Then, the ACKs 
for all those segments are aggregated in another burst and sent 
back to the TCP client, and so on. However, when the delayed 
ACK algorithm is switched on, the results (Figs. 10.c and 
10.d) deviate from that behavior. When delayed ACK is used, 
the TCP receiver does not immediately sends an 
acknowledgement when a segment is received, but the ACK is 
delayed until a second segment arrives or a timer expires. That 
behavior leads to a certain amount of “fragmentation” of the 
sequence of data segments and acknowledgements (they are 
not always sent in a row, as it happened in the previous 
simulations). For this reason, the histogram presents peaks for 
other values of S, mainly at two and multiples of two, due to 
that feature of acknowledging the second segment. 

 



 

0.
13

0.
13

0.
06

0 0.
13

0 0.
06

19
.8

5

79
.6

4

0 1 2 3 4 5 6 7 8 9 10
0

10

20

30

40

50

60

70

80

90

100

 

pe
rc

en
ta

ge
 o

f b
ur

st
s 

(%
)

segments per burst  
(a) one flow and without delayed ACK for a medium flow. 

0.
16

16
.6

0.
27

0 0.
05

16
.4

9

0.
05

0

66
.3

8

0 1 2 3 4 5 6 7 8 9 10
0

10

20

30

40

50

60

70

80

90

100

 

pe
rc

en
ta

ge
 o

f b
ur

st
s 

(%
)

segments per burst  
(c) one flow, with delayed ACK for a medium flow 

57
.1

9

14
.9

8

9.
00

6.
61

4.
55

2.
96

1.
69

1.
28

1.
73

0 1 2 3 4 5 6 7 8 9 10
0

10

20

30

40

50

60

70

80

90

100

 

 

pe
rc

en
ta

ge
 o

f b
ur

st
 (

%
)

segments per burst  
(e) multiple flows , without delayed ACK for a medium flow 

5.
94

84
.9

9

0.
41 5.

32

0.
13 1.
75

0.
08

0.
85

0.
52

0 1 2 3 4 5 6 7 8 9 10
0

10

20

30

40

50

60

70

80

90

100

 

pe
rc

en
ta

ge
 o

f b
ur

st
s 

(%
)

segments per burst  
(g) multiple flows and using delayed ACK for a medium flow 

0 5 10 15 20 25 30 35 40 45
0

10

20

30

40

50

60

70

80

90

100

 

 

pe
rc

en
ta

ge
 o

f b
ur

st
s 

(%
)

segments per burst  
(b) one flow and without delayed ACK for a fast flow. 

0 5 10 15 20 25 30 35 40 45
0

10

20

30

40

50

60

70

80

90

100

 

 

pe
rc

en
ta

ge
 o

f b
ur

st
s 

(%
)

segments per burst  
(d) one flow and using delayed ACK for a fast  flow 

0 5 10 15 20 25 30 35 40 45
0

10

20

30

40

50

60

70

80

90

100
 

 

pe
rc

en
ta

ge
 o

f b
ur

st
s 

(%
)

segments per burst  
(f) multiple flows , without delayed ACK for a medium flow 

0 5 10 15 20 25 30 35 40 45
0

10

20

30

40

50

60

70

80

90

100

 

pe
rc

en
ta

ge
 o

f b
ur

st
s 

(%
)

segments per burst  
(h) multiple flows , without delayed ACK for a medium flow

Figure 10: Histograms of the number of segments of a TCP flow per burst for different scenarios.



 

When background traffic is added, the results are 
completely different (Figs. 10.e, 10.f, 10.g, 10.h). The bursts 
generally carry a lower number of TCP segments of a flow 
than in the previous scenarios. In this case, as the formation of 
a burst can be initiated not only by the flow which is being 
studied, but by any of the packets of the other traffic sources, 
there is a significant fragmentation of the sequence of data 
segments, as they will be sent in different bursts. Like in the 
case with no additional traffic, if we switch the delayed ACK 
on, the number of segments per burst is mainly distributed 
over multiples of two. 

To explain in more detail the impact of adding background 
traffic, we will refer to Figs. 11 and 12. The former shows the 
sequence number of the segments sent by the TCP sender 
without background traffic for a fast flow without delayed 
ACK. It is clear that the transmission is very bursty and 
synchronized. Every RTT, all the segments of the TCP 
window are transmitted in a row, so all these segments are 
assembled into a single burst. Fig. 12 shows the case where the 
burstifier is fed with additional traffic. The transmission begins 
with the same behavior: all segments of the TCP window are 
assembled together in a burst. However, as time goes by, the 
transmission of all consecutive segments in a row is broken. 
For instance, a packet of another flow arrived at the burstifier 
and started the process of burst formation, so that when the 
row of segments of the TCP flow that we are considering 
arrived at the burstifier, a portion of them entered in the buffer 
before the expiration of the burst aggregation timer, while the 
rest arrived after the expiration, and then should be transmitted 
in a different burst. Hence, the transmission of the segments is 
finally spread along a RTT, and each burst contains a lower 
number of segments of the flow. Therefore, after several 
transmission rounds, the mean number of segments per burst 
(S) reaches a steady state (Fig. 13 shows the moving average). 
In these simulations we used a timer-based assembly 
algorithm. If an algorithm based on burst size or a hybrid one 
were used, we expect the results to be even more noticeable.  

In order to be able to determine the throughput of TCP in 
OBS networks, and to find what the real correlation benefit is, 
it is necessary to know the average number of segments per 
burst. We have measured this value for four scenarios, and for 
different burst aggregation timers. Fig. 14 shows the 
simulation results as well as the analytical results obtained for 
a single TCP flow without additional traffic (equation 3). The 
simulation shows that when additional traffic is considered, the 
mean number of TCP segments of a TCP flow per burst is 
much lower than in the case of the single flow. Regarding the 
utilization or not of the delayed ACK feature, the differences 
are not significant when additional traffic is considered, but 
they are in the simple scenario. In summary, the results show 
that the number of segments per bursts is highly overestimated 
if we try to apply the results obtained when the burstifier is fed 
by only one TCP flow, to a pragmatic scenario with multiple 
traffic sources. 
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Figure 11: Packet trace, transfer of a single flow 
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Figure 12: Packet trace, transfer of a TCP flow in the model with additional 
traffic 

0 5 10 15 20 25 30
0

5

10

15

20

25

30

 

 

nu
m

be
r 

of
 T

C
P

 s
eg

m
en

ts
 p

er
 b

ur
st

time (seconds)  
Figure 13: Moving average of the number of segments per burst of a TCP 
flow in a transmission. 
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Figure 14: Average number of segments of a TCP flow per burst. 
 

C. Simulations for different assembly timers 
Now, our aim is to quantify the impact on goodput, which is 

defined as the useful data received at destination per unit of 
time. The simulations have consisted in the transfer of one 
hundred files of 20 Mbytes, setting the burst loss probability to 
10-3. Higher probabilities would not be realistic, since an 
operator would not deploy a network with such high losses. 
The values of the timers have been chosen in the range of 
previous studies. The simulations results are shown in Figs. 15 
and 16. The average values are represented together with the 
95% confidence interval. A number of conclusions can be 
obtained from these figures. 

TCP Reno vs. TCP SACK: The performance of TCP Reno 
and SACK for low burstification timers (10-5-10-4), and for 
high timers (around 100 ms) is very similar. For low timers, 
the number of segments per burst is one, hence all losses are 
equally solved by TCP Reno and SACK, as we explained in 
Section III. For high timers, the lost of a burst usually means 
the lost of the complete window of the TCP flow, and, again, 
as described in Section III, both versions of TCP have the 
same behavior. However, for the mid timers, SACK offers 
better performance due to its capacity to recover from multiple 
segment losses. Therefore, the results completely agree with 
the qualitative analysis of Section III. 

Results with and without delayed ACK: As we demonstrated 
in [15], the goodput when the delayed ACK algorithm is 
employed, is lower than when that algorithm is not activated. 
The qualitative explanation was given in Section II.C, and can 
be found in more detail in that reference. 

Results with and without additional traffic: The results show 
that for low timers there are no differences in performance 
when considering or not additional traffic. However, for timers 
from 0.3 to 10 ms, the goodput is higher for the scenario with 
no additional traffic than for the scenario with background 
traffic. This is due to the fact that the number of segments per 
burst belonging to the same flow is higher when additional 
traffic is not considered, thereby leading to a higher correlation 

gain. On the other hand, for high timers, the bursts carry a very 
high number of segments when no additional traffic is 
considered, so the losses usually lead to a timeout event. 
Hence, the losses are more harmful when no additional traffic 
is considered for these high timers.  

Optimal value of the burstification timer: The goodput 
depends on the value of the burstification timer. The higher 
goodput is obtained for timers from 0.3 to 10 ms.  This is due 
to the correlation gain. However, if the timer is set to a higher 
value, the goodput decreases, being even lower than that 
obtained for very low timers where there is not correlation 
benefit. The reason for that behavior is that not only burst 
losses affect the performance of TCP over OBS, but also the 
delay penalty imposed by the burstifier (Section III.A). 

1E-5 1E-4 1E-3 0.01 0.1
0

100

200

300

400

500

600

700

 

 

G
oo

dp
ut

 (
ky

te
s/

s)

T
b
 (seconds)

 SACK with delayed ACK (no additional traffic)
 SACK with delayed ACK (with additional traffic)
 Reno with delayed ACK (no additional traffic)
 Reno with delayed ACK (with additional traffic)
 theoretical TCP limit

 
Figure 15: TCP goodput for TCP Reno and SACK, with and without 
additional traffic, with p =10-3, when the delayed ACK algorithm is used. 
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Figure 16: TCP goodput for TCP Reno and SACK, with and without 
additional traffic,  with p =10-3, when the delayed ACK algorithm is not used. 
 

 



 

In order to evaluate the impact of the delay penalty 
introduced by the burstifier, we define the following figure of 
merit: 

 

losses without )(Goodput 
losses without )(Goodput 

b_ref

b
delay T

T
F = ,     (4) 

 
where Tb_ref is a value of the burstifier timer so small that  the 
bursts always contain one segment, and the delay in the 
burstifier is very small when compared to the RTT. We have 
chosen 10-5 seconds as it corresponds to the lowest value of 
the timer used in the simulations. 

As the TCP Send Rate is inversely proportional to RTT, and 
the maximum increase in the RTT is 2Tb, it is expected that  the 
figure of merit will be, approximately, 

 

b
delay TRTT

RTT
F

20

0

+
= .             (5) 

where RTT0 is the basic round trip time of the network, that is, 
the round trip time when no burstification delay is considered. 

Fig. 17 shows both the analytical figure of merit (equation 
5) and the simulation results. They correspond to the networks 
shown in Figs. 8 and 9 (RTT0 = 100 ms), when different 
scenarios regarding to delayed ACK and background traffic 
are considered. In this case, it is important to remark that since 
there are no losses, there is no difference between TCP Reno 
and SACK. As in the previous simulations, we have measured 
the transfers of files of 20 Mbytes to obtain the experimental 
results. The simulation results match with the expected figure 
of merit of the delay penalty. In this case, the difference 
between considering additional traffic or not, is almost 
negligible. The most significant conclusion is that values of the 
burstification timer lower than 10 milliseconds do not harm 
TCP goodput. However, for higher values, there is significant 
performance degradation. Hence, high burstification timers are 
very influenced by delay penalty, and that is why the goodput 
significantly decreases for those timers in Figs. 15 and 16.  
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V. SUMMARY 
We have performed a simulation study of the performance 

of TCP over OBS networks when multiple traffic sources feed 
a burstifier. The simulations have been used with a double 
purpose, to present quantitative results, but also to provide 
qualitative explanations of the processes and factors with an 
impact on performance.  

It has been shown that when additional traffic is considered, 
the correlation gain is not as high as when only one TCP flow 
is sent through the network. The reason is that the bursts carry 
a lower number of segments belonging to the considered TCP 
flow. Moreover, it has been confirmed that TCP SACK is 
highly beneficial for OBS networks, as it leads to higher 
goodput than TCP Reno, and that if the delayed ACK feature 
is activated, it leads to lower goodput. This latter fact had been 
demonstrated for the single flow case, but not for the case 
where multiple traffic sources share a burstifier. 

We are currently working in an analytical model to 
complement and enhance the simulation results. Also, in future 
work, the performance will be analyzed considering the 
utilization of larger transmission windows, as well as new TCP 
versions. 
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